Proposal

for

Inception and Establishment of New M. Sc. Program

M. Sc. Material Science (Specialization in Energy Science)

Curriculum (Under Credit and Semester System w.e.f. 2023 Admission)

SCHOOL OF ENERGY MATERIALS MAHATMA GANDHI UNIVERISTY KOTTAYAM

1. TITLE OF THE PROGRAMME:

The programme shall be called Master of Science (M.Sc. Material Science (Specialization in Energy Science).

2. ABOUT THE COURSE:

M.Sc. Material Science (Specialization in Energy Science) programme has been proposed to offer students high level interdisciplinary education and training in novel materials and its technological applications. The course will focus on the science and technology related to various energy sectors giving emphasis to the renewable energy. The course has immense job potential in industries and research organizations working on battery, fuel cell and power generation (hydroelectric, thermal, geothermal, tidal, wind, biofuel and nuclear) in India and abroad.

3. ELIGIBILITY FOR ADMISSION:

A pass in B.Sc. or B.S. in Chemistry/Physics/Materials Science/Nanoscience and Nanotechnology/Polymer Chemistry and Renewable Energy.

4. ADMISSION CRITERIA:

The admission is made on the basis of the performance in entrance test (objective type/ short answer questions). Admission to the said M.Sc. Course will follow the rules and regulations, which are currently as per the CSS regulations of Mahatma Gandhi University for admission to postgraduate course.

5. STUDENT INTAKE:

10 Seats + 2 (International)

6. DURATION OF THE COURSE:

Two years course with Four Semesters, each of 6 months.

7. SCHEME OF CLASSES:

Every semester will have the course distribution with appropriate number of theory and practicals. The fourth semester will accommodate the project work also.

8. PROJECT WORK:

Every candidate must do a project work in the 4 th semester under a supervisor (approved by the Course Coordinator) in a topic having relevance to the application in energy industry. The project thesis should be carried out either at energy laboratory of internationally or nationally renowned institution OR at relevant industry in the energy sector.

9. FEE STRUCTURE:

Proposed fee structure of M.Sc. Material Science (Specialization in Energy Science) can be as follows;

Description	Amount in
	(Rupees)
1. Admission Fee	200
2. Tuition fee per semester	15000
3. Library Fee	200
4. Affiliation Fee	200
5. Stationery Fee	500
6. Internet and Audio-Visual Fee	500
7. Sports and Athletic Fee	200
8. Student Aid Fund	500
9. Medical inspection Fee	500
10. Student Care Fund (Per Year)	500
11. DDF	2000
12. Caution Deposit	1000
13. PTA Fund	1000
14. Lab Fee (per semester)	7500
15. Miscellaneous (Examination/mark list/viva)	2000
Total	31,800/-

10.COURSES AND CREDITS

Three kinds of courses are offered – Core Courses, Elective Courses and Laboratory courses. Core Courses and Laboratory courses are offered by the school conducting the program. Each course is allotted credits varying from 2 to 4 depending on the

hours of instruction / practical. (A 3- credit course, in general, is one, which normally involves three hours per week of classroom teaching or lecture / seminar/ practical lessons).

Credit Requirements: The minimum total credits required for the successful completion of the M. Sc. program shall be 80.

Course Teaching: Courses shall generally be taught by the faculty who designed the course, though it is possible for the Faculty Council to assign the teaching of a course to more than one faculty.

Internal Assessment: The student's attendance and classroom performance as well as the feedback received from tests, tutorials, assignments and term papers shall form basis for internal assessment. The internal assessment will account for 40% of evaluation. The internal assessment marks shall be distributed as follows and as per regulation in 8 and 10 of CSS regulations 2020 of Mahatma Gandhi University.

A. Theory

Components' % of internal marks

- 1) Two test papers 60%
- 2) Assignments/Book Review/debates 20%
- 3) Seminars/Presentation of case study 20%

B. Practical's

Components' % of internal marks

- 1) Two test papers 40%
- 2) Lab Skill 25%
- 3) Records/Viva 25%
- 4) Attendance 10%

11. EVALUATION

All work pertaining to the Examinations shall be held in the Schools/ Departments of study and research under the direct control and supervision of the Directors/ Heads

of the Departments. There shall be continuous internal assessment as well as end semester examinations for all the courses. Evaluation of the courses shall be conducted by the respective faculty members of School of Energy Materials. Indirect Grading is employed for the evaluation of courses. The performance of a student in each course is evaluated in terms of percentage of marks converted to grade points.

A candidate will be deemed to have completed the requirements of study of any semester and permitted to appear each University end semester examinations (ESE) only if,

- 1. The candidate has not less than 75% of attendance in each of the subjects of the total number of working days of the concerned semester.
- 2. His/her progress has been good
- 3. His/her character and conduct has been good
- 4. She/he has minimum of 50 % of sessional marks for each subject.

A student who has an attendance and sessional marks lower than 75% and 50% respectively will not be permitted to appear for the ESE and he/she has to redo the semester at the next available opportunity. However, a candidate can repeat the course or avail condonation of attendance for temporary break of study, only once during entire programme as per existing University rules.

12. PROCESS OF EVALUATION

The internal assessment will be a continuous assessment (CA) that accounts for 40% of the evaluation in both theory and practical's. The end semester examination will account for the remaining 60% of the evaluation.

End-Semester Examination: The end semester examination will account for 60% of the evaluation

Continuous Assessment (CA): The student's participation and classroom performance as well as the feedback received from tests, tutorials, assignments and term papers shall form the basis for continuous assessment (CA). It accounts for 40% of the evaluation in both theory and practicals. This assessment shall be based on a predetermined transparent system involving periodic written tests, assignments and seminars in respect of theory courses and based on tests, lab skill, records/viva and attendance in respect of practical courses.

The percentage of marks assigned to various components for internal evaluation is as follows:

a. Theory

SI. No	Components	% of marks
1.	Test Papers (2)	60
2.	Assignment / Debates/Book review	20
3.	Seminar/ Presentation of Case study	20

b. Practical's

SI. No	Components	% of internal marks
1.	Lab skill	25
2.	Observation and recording results	40
3.	Punctuality and neatness	10
4.	Viva-voce	25

Test Papers: For each course there shall be at least three class tests during a semester. Average of the marks obtained in the best two tests will be counted as the internal test component of CAS. Valued answer scripts shall be made available to the students for perusal within 10 working days from the date of the tests.

Assignments: Each student shall be required to do 2 assignments for each course. Assignments after valuation must be returned to the students. The teacher shall define the expected quality of the above in terms of structure, content, presentation and the like, and inform the same to the students. Punctuality in submission of assignments/records is to be given a weightage in the internal evaluation.

Seminar: Every student shall deliver one seminar as an internal component of every course and must be evaluated by the respective course teacher in terms of structure, content, presentation and interaction. The soft and hard copies of the seminar report are to be submitted to the teacher in charge.

Results of Continuous Assessment: The results of the CA counter-signed by Head of the school/Centre shall be displayed on the notice board 5 days before the end semester examinations. The marks awarded for various components of the CA shall not be rounded off, if it has a decimal part. The total marks of the CA shall be rounded off to the nearest whole number. Relevant records of continuous assessment (CA) must be kept in the department and that must be made available for verification.

Project Work: There shall be a project to be undertaken by all students. The dissertation entails field work, lab work, report writing, presentation and viva voce. The class hours allotted for project work may be clustered into a single slot so that students can do their work at parent school or other institution for a continuous period of time. However, appropriate changes can be made by the faculty council in this regard. Project/dissertation shall be carried out under the supervision of a teacher in the parent School/Centre/Institute or other research institutes or industrial establishment or university departments if they permit the students to do so, after getting permission from the Department Head. In such cases, one of the teachers from the schools/centres/institutes would be the co-supervisor/internal guide and an expert from the industry/ research organization concerned shall act as supervisor/ external guide.

Process of evaluation of project work in the fourth semester: The evaluation of the project in the fourth semester will be done by external examiner, based on the work done by the student, content, presentation of the project work and a viva voce. A panel of External Examiners is prepared based on recommendation of Faculty Council of School of Energy Materials and approval of the same by Vice-chancellor.

There is no provision for improving the continuous assessment/ final evaluation of the project.

13.PATTERN OF QUESTION PAPERS FOR THE END- SEMESTER WRITTEN EXAMINATION

The question papers set for the end-semester written examination will have three sections and carry 60 marks as detailed below:

Section A – Fifteen short answer questions, minimum one from each Unit. Students will have to answer any twelve. Each question will carry three marks (Total 36 marks).

Section B – Six short essay questions, minimum one from each Unit. Students will have to answer any four. Each question will carry 6 marks (Total 24 marks).

Both sections will contain questions covering all the cognitive levels Remembering/ Understanding/Applying/Analysing/ Evaluating and Creating. There will be questions of higher levels of learning for at least 10 marks.

The End Semester Examination (ESE) will be of three hours duration and carry 60 marks. The ESE for the core and elective courses shall be conducted based on the following pattern of question paper.

		Choice and	Question	Total	Alignment wit	
Section	Cognitive level	marks of	specification	Marks	Course	
		questions			outcomes	
					(COs)	
Section A	Remembering/Underst	12 out of	Minimum one	36	Aligned with	
	nding/Applying/Evaluat	15 questions;3	question from		COs	
	ng.	marks each	each unit.			
Section B	Applying/Analyzing/	4 out of 7	Minimum one	24	Aligned with	
	Evaluating/Creating	questions; 6	question from		COs	
		marks each	each unit			
Total Marks = 60						

The cognitive levels of questions in the End Semester Examinations are summarised as :

- Lower levels of learning (Remembering/Understanding/Applying) :30 to 40%
- **Higher Levels** of Learning (Analyzing/Evaluating/Creating) : 60 to70%

The **difficulty levels** of questions in the End Semester Examinations are categorised as Low, Medium and High. The percentage of questions in each level of difficulty are given below:

- Low: 20 to30%
- Moderate: 55 to65%
- High: 15 to25%

14.GRADING SYSTEM

The grading system followed is that of relative grading on a ten-point scale. The following table indicates the performance range and the relative value of the grades (grade points) on the scale.

Range of % of Marks	Grade	Performance	Grade
			Foint
95 % ≤ 100	0	Outstanding	10
85 % < 95	A Plus	Excellent	9
75 % < 85	A Only	Very Good	8
65 % < 75	B Plus	Good	7
55 % < 65	B Only	Above Average	6
45 % < 55	C Only	Average	5
40 % < 45	P Only	Pass	4
Below 40	F	Fail	0
Absent	Ab	Absent	0

Performance range and relative value of the Grades (Grade points)

Minimum grade for passing in a course or programme: The minimum for a pass in a course is 'P' grade. The minimum credit point requirement (CGPA) for the programme is four.

15. CONSOLIDATION AND DECLARATION OF RESULTS AND ISSUE OF GRADE CARDS

All work pertaining to the Examinations shall be held in the Schools/ Departments of study and research under the direct control and supervision of the Directors/ Heads of the Departments. The Director of each School will, in consultation with the Faculty Council, nominate a senior teacher as the Chief Examiner who will help him/her in the matter. The marks awarded for internal assessment will be displayed in the school's notice board at the end of each semester. The Pass Board will consist

entirely of the faculty of the Centre and will be constituted by the director on the advice of the Faculty Council. The tabulated Grade sheets will be forwarded after each end – semester examination to the office of the Controller of the Examinations. The CSS section in the Controller's office will check the Grade Card for any errors and notify the results after consolidating them. On completion of the final semester, a consolidated Grade Card showing the details of all the courses taken during the programme will be issued to the students. The consolidated Grade Card will contain the details of all the courses with their titles, credits, grades obtained, the total credits earned, the SGPA and the CGPA.

16.REVALUATION

The answer scripts of examinations under CSS shall have provisions for revaluation. Evaluation or Scrutiny of answer scripts for the first and third semester is provided. The application for scrutiny and revaluation of answer scripts shall be submitted to the Head of the concerned School/ Department/ Centre within 15 days from the date of publication of the results.

17.REAPPEARANCE AND IMPROVEMENT IN EXAMINATIONS:

A student who failed for a course in a semester can register for Reappearance in the forthcoming examination, subject to the conditions set forth in these regulations. Improvement of marks/grades in the forthcoming examination can be done, subject to the conditions set forth in these regulations.

18. REGISTRATION FOR IMPROVEMENT

A candidate has to apply for registration for improvement by paying the requisite fee. Candidates are not permitted to register for improvement of grades for Individual course. Candidates in the1st and2nd semesters, who have secured SGP A letter grade 'P'or above in the End Semester Examination can improve their grade by reappearing for all the semester courses along with the next immediate batch. In such cases a candidate will be awarded a new grade only if there is an improvement in grade in the new examination; otherwise, the candidate is eligible to retain the grade already awarded. Candidates in the 3rd semester, who have secured the SGPA letter grade 'P' or above in the End Semester Examination, can improve their grade by reappearing for all the semester courses, along with the 3rd semester supplementary examination being conducted for failed candidates immediately after the completion of End

Semester Examination of Fourth semester. This provision is applicable only for third semester. Improvement of the 4th semester can be done along with the immediate lower batch. If the improvement is meant to obtain minimum CGPA requirement, a candidate has the option to decide which semester (3rd or 4th) is to be improved; however, the grade given to the candidate shall be that obtained for the entire semester improvement examination. 1st and 2nd semester SGPA cannot be improved after the completion of the 4th semester. Only 3rd and 4th semester SGPA can be improved after the completion of a programme. The marks/grades awarded for Continuous assessment and that for the Project/dissertation cannot be improved. SGPA secured in the 4th semester can be improved only for the purpose of fulfilling the minimum CGPA requirement.

19.REAPPEARANCE

Candidatesinthe1st and2nd semesters who have secured a letter grade of 'F 'or 'Ab' in any of the courses can avail two immediate consecutive chances to reappear for the examination, course wise, provided the candidate has applied for the same and paid the required fee.Candidateinthe3rd semester who has secured letter grade of 'F'or 'Ab'inany of the courses can reappear for exams course-wise in the 3rd semester supplementary examination, which will be conducted immediately after the completion of End Semester Examination of Fourth semester, provided the candidate has applied for the same and paid the required fee (fee for supplementary examination of any course shall be full semester examination fee irrespective of number of courses involved). Candidates who secured the grade of only 'F'or'Ab'inacourseinthe4th semester examination can re-appear course wise, along with the immediate lower batch. Candidates who secured the grade of only 'F' or'Ab'inacourseinthe3rd /4th semester examinations will be given two additional chances for course-wise reappearance even after the completion of the programme; but it has to be done within a period of two years after the completion. In such cases a candidate has to apply for the same as a supplementary exam and pay the required fee (Fee for supplementary examination of any course shall be full semester examination fee irrespective of number of courses involved).

20. REQUIREMENTS OF ATTENDANCE AND PROGRESS

A candidate will be deemed to have completed the requirements of study of any semester and permitted to appear each University end semester examinations (ESE) only if,

1. The candidate has not less than 75% of attendance in each of the subjects of the total number of working days of the concerned semester.

- 2. His/her progress has been good
- 3. His/her character and conduct has been good

4. She/he has minimum of 50 % of sessional marks for each subject. A student who has an attendance and sessional marks lower than 75% and 50% respectively will not be permitted to appear for the ESE and he/she has to redo the semester at the next available opportunity. However, a candidate can repeat the course or avail condonation of attendance for temporary break of study, only once during entire programme as per existing University rules.

21. PROCEDURE FOR COMPLETING COURSE

The academic year will be divided into four semesters, the odd semester normally commencing at the beginning of the academic year and even semester ending with the academic year. A candidate can proceed to the course of study of any semester (other than first semester) if and only if he has completed the course in the previous semester and has registered for the examination of the previous semester. A candidate who is required to repeat the course of any semester for want of attendance / progress or who desires to rejoin the semester after a period of discontinuance or who upon his own request is specially permitted to repeat the semester in order to improve his performance, may join the semester for which he is eligible or permitted to join. On discontinuation of the course, the student should refund the entire stipend he/she received from the University within one year. The transfer certificate and other certificates will be issued only after refunding the stipend.

22.ADD-ON COURSES

In addition to Core, elective and practical courses the school will offer add-on courses such as;

- Green Energy Technologies
- Energy Economics
- Hydrogen Generation and Storage
- Nanotechnology for clean energy
- Materials Recycling and Waste Management

The course structure and syllabus will be announced before commencement of each semester. The lectures will be delivered by reputed Professors/ Scientists from other Universities/ Institutions in India or Abroad.

Faculty

Upon successful completion of two years in the program the candidates will be awarded a Master's Degree under the Faculty of Science.

(As per the M G University CSS regulations amended from time to time.

23. CURRICULUM

M.Sc. Material Science (Specialization in Energy Science)

Career Opportunities: This Masters programme provides students with knowledge and skills required for modern science and technology. Graduates will be prepared for careers within academia or industry in materials-related research and development. The demand for talents in this field is large both in research institutes and industries. For example, wide-bandgap semiconductors, high-performance soft matters, materials modelling, advanced multifunctional materials as well as hybrid smart materials are of high interest in the industries in India and other countries.

The proposed course is an amalgamation of conventional and non-conventional energy related courses focusing on emerging energy source and economical aspects, basics of materials for energy engineering with focus towards renewable energy related studies, computational methodologies etc. This curriculum envisages to prepare the students for a professional or research career either in industries or academia after the completion of the program.

Features of this program

- Courses with in-depth understanding of chemistry aspects of energy materials along with hands-on experimental facilities
- Detailed chemical synthesis and characterization-based laboratory experiments
- Computational methods-oriented laboratory course which is a must for modern material scientists
- Vast choice of discipline electives to be chosen from pool of courses of School of Energy Materials pertaining to Energy Science
- Scope of focused research on materials-energy-materials for energy nexus.
- 20 days internship is provided in first two semesters.
- Prospect to receive foreign university fellowship for excellent students to pursue research project in Semester IV.
- Opportunity for highly motivated students to pursue PhD in reputed foreign universities.

Programme Outcomes (PO) of Mahatma Gandhi University

PO 1: Critical Thinking and Analytical Reasoning Capability to analyse, evaluate and interpret evidence, arguments, claims, beliefs on the basis of empirical evidence; reflect relevant implications to the reality; formulate logical arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; able to envisage the reflective thought to the implication on the society.

PO 2: Scientific Reasoning and Problem-Solving Ability to analyse, discuss, interpret and draw conclusions from quantitative/qualitative data and experimental evidences; and critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualise into research and apply one's learning to real life situations.

PO3: Multidisciplinary/Interdisciplinary/Transdisciplinary Approach Acquire interdisciplinary/multidisciplinary/transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative- multidisciplinary/interdisciplinary/transdisciplinary-approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills Ability to reflect and express thoughts and ideas effectively in verbal and nonverbal way; Communicate with others using appropriate channel; confidently share one's views and express herself/ himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner and articulate in a specific context of communication.

PO 5: Leadership Skills Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating a goal, building a team who can help achieve the goal, motivating and inspiring team members to engage with that goal, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 6: Social Consciousness and Responsibility Ability to contemplate of the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for 12 attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness and Sustainability Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity, managing diversity and use of an inclusive approach to the extent possible.

PO 8: Moral and Ethical Reasoning Ability to embrace moral/ethical values in conducting one's life, formulate a position/ argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issuesrelatedtoone'sworkandlivingasadignifiedpersoninthesociety.

PO 9: Networking and Collaboration Acquire skills to be able to collaborate and network with scholars in an educational institution, professional organizations, research organizations and individuals in India and abroad.

PO10: Lifelong Learning Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self- paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling

Learning Outcomes-based Curriculum Framework (LOCF) for Post-graduate Programme

M.Sc. Material Science (Specialization in Energy Science)

(Syllabus effective from 2023 Admission onwards)

School of Energy Materials

Mahatma Gandhi University Kottayam

PREAMBLE

The role of higher education is vital in securing the gainful employment and providing further access to higher education comparable to the best available in the world-class institutions elsewhere. The improvement in the quality of higher education, therefore, deserves to be given tom-most priority to enable the young generation of students to acquire skill, training and knowledge to enhance their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes across all undergraduate programs in science, humanities, commerce and professional streams of higher education. One of the significant reforms in the undergraduate education is to introduce the Learning Outcomes based Curriculum Framework (LOCF) which makes it student-centric, interactive and outcome-oriented with well-defined aims, objectives and goals to achieve. The University Grants Commission (UGC) took the initiative of implementing the LOCF in the Colleges and the Universities of the country. Accordingly, the Mahatma Gandhi University has decided to implement the LOCF in all its departments under the auspices of Internal Quality Assurance Cell (IQAC). A series of teacher training workshops were organised by IQAC and the office of the Credit and Semester System (CSS), and the departments have revised the syllabus accordingly, through workshops and in consultation with academic experts in the field.

BRIEF HISTORY OF THE DEPARTMENT

The School of Energy Materials (SEM) was envisioned to address the increasing demand for trained professionals and researchers in the field of energy science. The School of Energy Materials (SEM) offers M.Tech and PhD programs in Energy Science and Technology. It also creates synergy between academia and

industry by entering into several agreements with industrial organisations in India.

Programs offered by the School of Energy Materials will equip students with skills necessary to be successful in the area of sustainable energy science, thereby bridging the gap of trained manpower in the energy sector. Some of the areas of study include Advanced thermodynamics, material characterisation techniques, polymers and nano-composites, and Functional materials.

SCHOOL OF ENERGY MATERIALS

PROGRAMME	: M. Sc. Material Science (Specialization in Energy
	Science)
DURATION	: 2 years (2023 Admission onwards)
Credits	:Core :67 , Elective: 17, Open course: 4

Program Specific Outcomes (PSOs): This is an interdisciplinary subject offers knowledge, understanding and output that is integrated and cross-disciplinary in nature. The programme specific outcome (PSO) envisaged in this post graduate programme would be;

PSO No:	PSOs
1	To develop in students, the knowledge in students about the importance and scope of the subject
2	The detailed functional knowledge of theoretical concepts and experimental aspects of chemistry, physics and material science.
3	Provide opportunities to excel in academics, research or Industry
	Train students in the field of Material Science with specific emphasis on
4	Energy Science and Technology to cater to the present demands of
	miniaturization and energy economy.
5	Solid understanding of the sciences and technology related to energy
	production, storage and conversion.
6	Understand the economic, environmental and policy impact of a
	sustainable energy practice for a sustainable society

7	Will learn basic to advanced aspects of Renewable Energy systems			
	completely prepared to shift from fossil fuels to renewable sources.			
	Facilitate the students to be able to familiarise and to work with			
8	advanced experimental and computational techniques at various			
	scales.			
	Nurture the quality of rationality and inquisitiveness so that the			
	Nurture the quality of fationality and inquisitiveness, so that the			
9	students are capable of free and critical thinking to steer clear			
	judgemental and social biases.			
	Inspire the students to be committed to deliver good to the society by			
10	judicious application of scientific skill sets they acquire doing physics at			
	the nanoscale.			

SCHEME AND CREDIT DISTRIBUTION

Semester I

SI. No.	Course Code	Name of the Course	Credits	Credits Required	Total Credits
1	EMM23C81	Fundamentals of Material Science	3		
2	EMM23C82	Material Synthesis and Characterisation Techniques	3		
3	EMM23C83	Nanoscience and Nanotechnology	3	18	
4	EMM23C84	Advanced Thermodynamics	3	10	
5	EMM23C25	LAB I – Synthesis and Characterization of Advanced materials	3		
6	EMM23C85	Internship/Miniproject	3		24
*Elec	*Elective Courses				
8	EMM23E51	Basics of Energy Science	3		
	EMM23E52	Energy policies and Management	3	6	
9	EMM23E23	Thin film science and Technology	2		
10	EMM23E24	Bioenergy Technology	2		
11	EMM23E25	Polymer Chemistry	2		
12	EMM23E53	Machine Learning for Energy Science	2		

Semester 2

SI. No.	Course Code	Name of the Course	Credits	Credits Required	Total Credits
13	EMM23C86	Optical and Magnetic Properties of Materials	3	18	

14	EMM23C87	Synthesis and Applications of Nanocomposites	3	24	
15	EMM23C88	Advanced Functional Materials	3		
16	EMM23C60	Power Electronics and Applications	3		
17	EMM23C89	LAB II- Energy Conversion and Energy Storage	3		
18	EMM23C90	LAB III - Power Electronics and Applications	3		
*Elect	tive Courses (Choose any two)			
19	EMM23E26	Energy conversion, storage and transportation	3		
20	EMM23E52	MEMS and Nanofabrication	3		
21	EMM23E54	Solar, Photovoltaic Technology	2	6	
22	EMM23E29	Nuclear Energy and Technology	2		
23	EMM23E30	Energy from wind, geothermal and water	2		

Semester 3

SI. No.	Course Code	Name of the Course	Credits	Credits Required	Total Credits
24	EMM23C35	Advanced computation in Material science	3		
25	EMM23C91	Processing and Designing of Materials	3		
26	EMM23C34	Advanced Solid State and Electrochemistry	3	15	
27	EMM23C92	LAB IV- Fabrication of Materials and Applications	3		24
28	EMM23C93	Internship/Miniproject	3		
*Elective Courses (Choose any two)					
29	EMM23E31	Energy device and fabrication	3	_	
	EMM23E21	Hydrogen and Fuel cells	3	5	

30	EMM23E32	Metal, ceramics and	3		
		composites materials for			
		Energy applications			
31	EMM23E34	Research Methodology	2		
32	EMM23E35	Nano sensors and nanodevices	2		
33	EMM23E36	Nanotechnology in Energy	2		
34		Open Course	4	4	

Semester 4

SI. No.	Course Code	Name of the Course	Credits	Credits Required	Total Credits
35	EMM23C94	Industrial visit	3		
36	EMM23C95	Dissertation/Viva- voce	13	16	16

SEMESTER I

	MAHATMA GANDHI UNIVERSITY
गित्ताया अमृतमारन्ते	Fundamentals of Material Science
School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Fundamentals of Material Science
Type of Course	Core
Credit Value	3
Course Code	EMM23C81

Course	I his course focuse:	This course locuses on the fundamental aspects of materials science					
Summary & Justification	which every material scientist is supposed to be familiar with. The						
	course discusses	the basi	c structur	e of solid	s, classi	fication of	
	materials based or	n the stru	icture and	I the corre	lation be	tween the	
	structure and prop	erties. Th	e evolutio	n of prope	erties bas	sed on the	
	structure and its alt	eration is	also dealt	with.			
Semester	I						
Total						Total	
Student	Learning	Lecture	Tutorial	Practical	Others	Learning	
Learning	Approach					Hours	
Time (SLT)							
	Authentic	40	40	0	40	120	
	learning						
	Collaborative						
	learning						
	Independent						
	learning						
Pre-	Fundamental knowledge on the structure of solids and ceramics.						
requisite							
Others- Libra	ry, field work, semi	nar and	assignmei	nt prepara	tions, tes	st, journal,	
discussion etc							

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	Identify the structure of solids and understand the imperfection in solids.	U,	2,9
2	Understanding the diffusion mechanism of solids.	U	2,6,10
3	Analyse the various nucleation mechanism	An	2,6
4	Impart idea about phase diagram and phase transformation of materials. Different heat treatment mechanisms.	A, An	2,6,8
5	Will discuss the detail study about ceramic materials and their applications.	U,Ap	2,6,7
*Ren (C), S	nember (R), Understand (U), Apply (A), Analyse (An), Ev Skill (S), Interest (I) and Appreciation (Ap)	aluate (E),	Create

COURSE CONTENT

Module	Module Content	Hrs	CO.
No:			No.
Module 1	Structure of solids: Introduction to engineering	8	1
	materials, Description of materials science	Hrs.	
	tetrahedron, Force - interatomic distance curve,		
	Structure - description of unit cell and space lattices,		
	Coordination number, APF for cubic and hexagonal		
	close packed structures, Miller indices, Non crystalline		
	structures properties of crystalline and amorphous		
	structures, Crystal imperfections Significance of		
	structure property correlations in all classes of		
	engineering materials.		
Module 2	Diffusion phenomenon: Diffusion in ideal solutions,	15	2
	Kirkendall effect, Rate and mechanism of diffusion,	Hrs.	
	Fick's first and second law of diffusion, Applications of		
	diffusion, Concept of uphill diffusion.		

Module 3	Principles of solidification and phase equilibria:	12	3
	Concept of free energy and entropy; Structure of liquid	Hrs.	
	metals; Energetics of solidification; Nucleation and		
	growth, Homogeneous and heterogeneous nucleation,		
	Dendritic/Equiaxed growth, Origination of grain and		
	grain boundaries, Cast structure; Significance of		
	alloying, Intermediate alloy phases, solid solutions and		
	its types.		
Module 4	Phase diagrams and phase transformations: Basic	15	4
	definitions; Gibbs phase rule, Introductions to binary,	Hrs.	
	ternary and quaternary system; Construction of binary		
	isomorphous diagram from cooling curves, Time scale		
	for phase diagrams, Transformations in steels,		
	Precipitation process, recrystallization and growth.		
	Heat treatment: TTT curves, CCT curves, Annealing,		
	Normalising, Hardening, Tempering		
Module 5	Ceramics: Introduction to ceramic materials;	10	5
	Classification of ceramics, Crystal structure and	Hrs.	
	bonding of common advanced ceramic materials;		
	Mechanical behavior of ceramics, Glass and glass		
	ceramics, Preparation and characterisation of		
	ceramics powders; Characterisation of ceramic		
	materials; Applications of ceramics in advanced		
	technologies.		

Teaching	Classroom Procedure (Mode of transaction) Direct Instruction, Explicit Teaching, E-learning, interactive
and Learning Approach	Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group
	discussion, Presentation by individual student/ Group representative
Assessment	Mode of Assessment
Types	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature Seminar Presentation – A topic needs to be presented and discussed with the class Semester End Examination

References

- R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, 4th ed., Cengage Learning, 2009.
- D.R. Askeland, P.P. Phule, W.J. Wright, The Science and Engineering of Materials, 6th ed., Cengage Learning, 2010.
- W.D. Callister, D.G. Rethwisch, Materials science and Engineering: An Introduction, 8th ed., Wiley, 2010.
- B.S. Mitchell, An Introduction to Materials Engineering and Science for Chemical and Materials Engineers, 1st ed., Wiley- Interscience, 2003.
- 5. C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2005.
- 6. V. Singh, Physical Metallurgy, 1st ed., 2008.
- S.H. Avener, Introduction to Physical Metallurgy, 2nd ed., Tata McGraw-Hill Education, 2011.
- 8. V. Raghavan, Materials Science & Engineering: A first course, 5th ed., PHI Learning, 2004.
- 9. W.D. Kingery, Introduction to Ceramics, 2nd ed., John Wiley & Sons, 1999.

MAHATMA GANDHI UNIVERSITY

MATERIALS SYNTHESIS AND CHARACTERIZATION TECHNIQUES

School Name	School of Energy Materials					
Programme	M.Sc. Material Science (Specialization in Energy science)					
Course Name	MATERIALS SYNTI TECHNIQUES	HESIS A	AND CH	ARACT	ERIZAT	ION
Type of Course	Core					
Course Code	EMM23C82					
Course Summary & Justification	The course will include detail on solid state synthesis, solution- based synthesis (co-precipitation, solvothermal, sol-gel, microwave synthesis), synthesis from the melt, combustion synthesis, gas phase synthesis for thin films (PVD, CVD, sputtering), and polymer synthesis. It will also cover scattering techniques (e.g. XRD, PDF), spectroscopic techniques (e.g. IR, Raman, XPS, XAS, UV-vis), imaging (e.g. SEM, AFM, TEM), methods for studying materials properties such as electrochemical, mechanical and magnetic characterisation					
Semester	1		Credit		3	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	40	40	-	40	120
Pre-requisite	Basic understanding) on solid	d state (Graduat	e level)	
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.		
1	Explain the principles of synthesising solid materials by various routes, e.g. from solid phase, solution, melts, gas phase	U, A	4,6,8		
2	Explain the principles behind and the type of information that different characterisation techniques provide	U, A	2,7,8		
3	Evaluate the strengths and limitations of various synthesis and characterisation methods	U, A	2,6,7		
4	Propose technical applications for materials produced by different synthesis methods	An, E	1,2,7		
5	Propose and critically evaluate the suitability of synthesis and characterisation methodologies for a material targeted towards a particular application	U,A, S	2,3,7		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module No:	Module Content	Hrs	CO.No.
Module -1	Synthesis of nanomaterials: Gold, Silver, different types of Nano oxides, TiO2, ZnO by using sol-gel method, Co- precipitation, Hydrothermal, Microwave, Solvothermaland bio synthesis methods, Nanotubes and Nanowires, Carbon nanotubes, Graphene preparation, powder syntheses, crystal growth techniques, zone refining, properties and applications.	12	1
Module– 2	Top down and bottom-up synthesis- mechanical alloying, Mechanical ball-milling, Ion implantation, Inert gas condensation, Arc discharge, RF-plasma arc technique, Laser ablation, Template assisted synthesis, Clusters, Colloids, Zeolites, Porous silicon.	8	2

Module -3	Deposition techniques: Chemical vapour deposition (CVD), Metal Organic chemical vapour deposition (MOCVD), Epitaxial growth techniques: Molecular beam epitaxy, Atomic layer deposition, Pulsed laser deposition, Pulsed electrochemical deposition, Magnetron sputtering, Spin coating, Introduction to Lithography techniques	10	3
Module– 4	Principle, Theory, Working and Application; X-Ray Diffraction, Field Emission Scanning Electron Microscopy, High Resolution-Transmission Electron Microscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy.	15	4,5
Module– 5	Photoluminescence Spectroscopy, Raman Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Thermal analysis – Differential Scanning Calorimetry (DSC) – Thermogravimetric Analysis (TGA) – Differential Thermal Analysis (DTA) – Dynamic Mechanical Analysis (DMA), Mechanical Testing- Nano Indentation -Vibrating Sample Magnetometer, Zeta Potential and Particle size measurement.	15	2,3

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.			
Assessment	Mode of Assessment			
Types	1. Continuous Internal Assessment (CIA)			
	2. Seminar Presentation – a theme is to be discussed and			
	identified to prepare a paper and present in the seminar			
	3. Assignments			
	1. Semester End examination			

REFERENCES:

1. S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980.

2. B. D. Cullity, "Elements of X-ray Diffraction", 4th Edition, Addison Wiley, 1978.

3. W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate (Eds.), Handbook of NanoScience, Engg. and Technology, CRC Press, 2002.

4. K. Barriham, D.D. Vvedensky, Low dimensional semiconductor structures: fundamental and device applications, Cambridge University Press, 2001.

5. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.

6. J. George, Preparation of Thin Films, Marcel Dekker, Inc., New York.2005.

7. D.A. Skoog, F.J. Holler, S. R. Crouch, Instrumental Analysis, Cengage Learning, 2007.

8. K. J. Klabunde and R.M. Richards (Eds.), Nanoscale Materials in Chemistry, 2nd Edn., John Wiley & Sons, 2009.

TOTAL DATE	MAHATMA GANDHI UNIVERSITY
विवाया असूलमाइन्हा	Nanoscience and Nanotechnology
School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Nanoscience and Nanotechnology
Type of Course	Core
Credit Value	3
Course Code	EMM23C83

Course	This prov	/ides	an	٥v	verview	of
Summary & Justification	nanomaterials, the	ir synthes	sis, proper	ties, and s	pecific a	pplications
	of nanotechnology in material science, biomedical fields, electronic					
	devices, modelling and simulation, environmental solutions, and in					
	energy				r	production.
	This is t	o pro	oduce	students	tha	t can
	apply fundamenta	al knowle	dae of	nhysics c	homistry	hiology
						, biology,
	material science,	and comp	outational	science, t	o get tu	ndamentai
	knowledge in how	to model	and solve	e problems	s related	to design,
	synthesis, charac	cterization	, fabrica	ition, and	optimi	zation of
	functional nano ma	aterials.				
Semester	1					
Total						Total
Student	Learning	Lecture	Tutorial	Practical	Others	Learning
Learning	Approach					Hours
Time (SLT)		4.0	4.0		40	100
	Authentic	40	40	0	40	120
	learning					
	Collaborative					
	learning					
	Independent					
Bro	Eundomontol know	lodgo on	the etructu	ure of colid		omion
requisite	Fundamental knowledge on the structure of solids and ceramics.					
Others- Library, field work, seminar and assignment preparations, test, journal,						
discussion etc.						

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	To introduce the students to the world of nanoscience and provide knowledge of various synthesized/developed and natural nanomaterials and their possibilities.	U	1,2,7
2	To create understanding of the fundamentals of nanoscience and the properties of nanomaterials which are different from their bulk counterparts.	U,A	1,2,3,7
3	To create understanding of Size and shape dependence of properties at nanoscale.	U,R	2,3,7
4	Explain the properties of carbon nanomaterials.	U	2,3,7
5	Outline the structure, properties and applications of nanomaterials	U	3,7,10
6	Understand the various approaches for nanomaterials synthesis	U,A	4, 5,6,7
7	To understand the applications of nanomaterials in the fields of material science, biomedical fields, electronic devices, modeling and simulation, environmental solutions, and in energy production	U,A	4,5,6
8	Understand the toxicity and environmental Risks of Nanomaterials	U,A	1,2,7
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

COURSE CONTENT

Module	Module Content	Hrs	CO.
No:			No.
Module 1	Fundamentals of Nanoscience and Nanotechnology	8	1
	General introduction and history of nanomaterials,	Hrs.	
	Feynmann's vision on nanoscience & technology, bulk		
	vs nanomaterials, natural and synthetic nanomaterials.		
	Classification of nanostructures, Zero dimensional,		
	one dimensional two dimensional nanostructures. Size		

	and shape dependant properties and their uniqueness,			
	energy at nanoscale - surface characteristics of			
	nanomaterials, quantum confinement effect. Carbon			
	based nanomaterials; properties and applications of			
	fullerene, carbon nanotube, graphene, carbon onion,			
	nanodiamond. Coreshells, quantum dots,			
	nanoclusters, core-shells, organic, inorganic, hybrid			
	nanomaterials, biomimetic			
	nanomaterials.			
Module 2	Properties of Nanomaterials: General Introduction to	15	2	
	electronic, optical, magnetic, catalytic, mechanical,	Hrs.		
	and thermal properties of nanomaterials. Fundamental			
	types of electronic nanomaterials. Microelectronics,			
	Band structureconductor and semiconductor.			
	Electrical conductivity in nanomaterials. Optical and			
	photonic properties: Interaction of light with matter, the			
	surface plasmon – SPR and scattering color			
	generation from			
	nanoparticles and nanostructures. Quantum dots -			
	Optical properties related to quantum confinement.			
	Magnetic Properties: Introduction – magnetic			
	phenomena and their classical interpretation- the			
	nanoperspective. Introduction to nanomagnetism-			
	characteristics of nanomagnetic materials.			
	Magnetization and nanostructures. Mechanical &			
	Thermal properties: Nanomechanics- Introduction-			
	lattice mechanics- linear elasticity relations			

Module 3	Synthesis and Preparation of	12	3
	Nanomaterials: Understand the principles behind	Hrs.	
	synthesis of nanomaterials such as top down, bottom		
	up approaches, and solid-state synthesis methods.		
	Fabrication of nanomaterials by physical methods: ball		
	milling, physical vapor deposition, sputtering, laser		
	ablation, ion sputtering, laser pyrolysis, molecular		
	beam epitaxy, Langmuir-Blodgett growth,		
	electrospinning. By chemical routes: chemical		
	precipitation and coprecipitation, sol-gel methods,		
	chemical vapour deposition (CVD). General methods		
	for preparation, properties, and characterization of		
	nanoparticle/polymeric blends and its applications.		
	General methods for the preparation of		
	bionanoparticle/polymeric blends and its applications.		
	Surface modification of polymeric nanomaterials		
Module 4	Characterization Methods and Analytical tools for	15	4,5
----------	---	------	-----
	Nanoparticles General introduction to spectroscopic	Hrs.	
	techniques, Optical Microscopy, Scanning Electron		
	Microscopy (SEM), Transmission Electron Microscopy		
	(TEM), Atomic Force Microscopy (AFM), Scanning		
	Tunnelling Microscopy, Optical Absorption and		
	Emission Spectroscopy, Thermo Gravimetric Analysis,		
	Differential Scanning Calorimetry, Thermomechanical		
	Analysis, X-Ray Diffraction, UV-Visible spectroscopy,		
	Raman Spectroscopy, Dynamic Light Scattering		
	(DLS), Differential Scanning Calorimeter (DSC),		
	Differential Thermal Analyzer (DTA), Contact Angle		
	Analysis, Scanning Probe Microscopy (SPM), X-ray		
	Photoelectron Spectroscopy (XPS), electrochemical		
	characterization		
	measurements, Introduction to LASER spectroscopy		
	and its applications.		

Module 5	Applications of Nanoscience and Nanotechnology	10	5,6
	Applications of nanostructured materials for clean	Hrs.	
	energy-related applications. Nanomaterials for		
	photovoltaic solar energy conversion systems.		
	Functional nanostructured materials for		
	electrochemical energy storage systems, fuel cells,		
	nanocatalyts, nanomagnetic materials and devices,		
	nano sensors. Applications of nanobiotechnology in		
	tissue engineering, biopolymers for tissue engineering,		
	nanomedicines, wound healing, drug delivery,		
	diagnostic and therapeutic applications of		
	nanoformulations. Applications of nanotechnology in		
	medicine and dentistry. Nanostructured materials for		
	EMI shielding applications. Graphene		
	Functionalization for Applications. Applications of		
	conducting polymer nanocomposites, modeling of		
	advanced nano energy materials, electronic structure		
	of nanoparticles, Modeling, design and simulations of		
	nanostructured materials. Photonic and opto-		
	electronic properties and applications of nanoparticles.		
	Environmental application of nanomaterials, water		
	purification system.		

Module 6	Health, Environmental risk, Toxicology and Safe	7,8
	Handling of Nanomaterials General introduction to	
	Environmental risk, Toxicology of nanomaterials.	
	Developing Environmental Regulations Pertinent to	
	Nanotechnology, Analyses of Nanoparticles in the	
	Environment, Ecological hazards of nanomaterials.	
	Assessing nanotechnology health risk, treatment of	
	nanoparticles in waste water, nanoparticles in pollution	
	control, Development of sustainable	
	nanotechnology. Toxicology and risk assessment,	
	determination of potential toxicity, nanoparticles in	
	work place, biodistribution and interaction of	
	nanoparticles, nanoparticle dose in humans- issues	
	and challenges.	

Teaching	Classroom Procedure (Mode of transaction)			
and Learning Approach	Instruction:, Active co-operative learning, Seminar, Group Assignments, Authentic learning, Library work and Group			
	discussion, Presentation by individual student/ Group representative			
Assessment	Mode of Assessment			
Types	 Continuous Internal Assessment (CIA) Internal Test Assignment – Every student needs to write an assignment on a given topic based on the available published literature Seminar Presentation – A topic needs to be presented and discussed with the class Semester End Examination 			

Reference:

1. H. S. Nalwa (Ed.), "Encyclopedia of Nanoscience & Nanotechnology", American Scientific Publishers, California, 2004

2. M. D. Ventra, S. Evoy and J. R. Heflin, "Introduction to Nanoscale Science and Technology", Kluwer Academic Publishers, 2004.

3. Anke Krueger, Carbon Materials and Nanotechnology, Wiley-VCH Verlag GmbH & Co. KgaA, 2010. 4. B.P.S. Chauhan (Ed), Hybrid Nanomaterials: Synthesis, Characterization, and Applications, Wiley-VCH Verlag GmbH, 2011. 5. Cao, G., Nanostructures and Nanomaterials Synthesis, Properties, and Applications, Imperial College Press, 2004 6. M. A. Ratner and D. Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Prentice ldea", Hall, 2002. 7. M. D. Ventra, S. Evoy and J. R. Heflin, "Introduction to Nanoscale Science and Technology", Kluwer Academic Publishers, 2004.

STATISTICS AND HILLS	MAHATMA GANDHI UNIVERSITY
रिताया अप्रतमप्रन्त	Advanced Thermodynamics
School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Advanced Thermodynamics
Type of Course	Core
Credit Value	3
Course Code	EMM23C84

Course	This course aims	to prov	ride a go	od platfor	m to st	udents to
Summary &	understand, model and appreciate concept of dynamics involved in					
Justification	thermal energy transformation. To prepare them to carry out					
	experimental invest	tigation ar	nd analysis	s at later st	ages of g	raduation.
Semester	I					
Total						Total
Student	Learning	Lecture	Tutorial	Practical	Others	Learning
Learning	Approach					Hours
Time (SLT)						
	Authentic	40	40	0	40	120
	learning					
	Collaborative					
	learning					
	Independent					
	learning					
Pre-	Basic knowledge on atomic and nuclear forces.					
requisite	_					
Others- Libra	ry, field work, semi	nar and	assignmei	nt prepara	tions, tes	st, journal,
discussion etc	•					

CO	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	To apply the knowledge of mathematics, science and	U	2
	engineering fundamentals to model the energy		
	conversion phenomenon.		0.0
2	To identify and formulate power production based on the	U,An	2,6
3	To instill upon to envisage appropriate experiments	A An	2.6
	related to heat engines.	7 (,7 ())	2,0
4	To investigate the effectiveness of energy conversion	U	2,6
	process in mechanical power generation for the benefit of		
	monkind		
	mankind.		
5	To appreciate concepts learnt in fundamentals laws of	U, I, S	1,3,7
	thermodynamics from which learning ideas how to sustain		
	in energy crisis and think beyond curriculum in the field of		
	alternative and renewable sources of energy.		
6	To communicate effectively the concepts of internal	An, C	8,9
	combustion engines and try to think beyond curriculum in		
	alternative sources of energy.		
*Ren (C), S	nember (R), Understand (U), Apply (A), Analyse (An), Ev Skill (S), Interest (I) and Appreciation (Ap)	valuate (E),	Create

Module	Module Content	Hrs	CO.
No:			No.
<u>Module 1</u>	Classical Thermodynamics Mathematical foundations for thermodynamics- variables of thermodynamics, extensive and intensive quantities, equation for total differential, conversion formulas, exact differentials, general formulation, reciprocity characteristics, homogeneous functions, Euler's theorem. Concepts of entropy and free energy: Entropy as measure of randomness and unavailable energy. Entropy changes in reversible and irreversible process and during various processes. Clausius inequality. Variation of entropy with T and P. Helmholtz and Gibbs free energies.	15 Hrs.	1

Module 2	Thermodynamic criteria of equilibrium and	15	2,3
	spontaneity. Variation of free energy with temperature and pressure. Maxwell's relations,	Hrs.	
	Helmholtz equation.		
	Determination of free energy changes. Nernst heat		
	theorem and third law of		
	residual entropy		
	Partial molar Properties: Physical significance, Partial		
	molar volume and		
	partial molar free energy (chemical potential).		
	quantities by intercept method and slope methods.		
	Physical significance of		
	chemical potential. Variation of chemical potential with		
	temperature and		
	Derivation of Duber Margules equation		
Module 3	Statistical Mechanics	15	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space,	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles.	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function,	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function, distinguishable and indistinguishable particles,	15 Hrs.	3,4
Module 3	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function, distinguishable and indistinguishable particles, partition function and thermodynamic functions separation of partition	15 Hrs.	3,4
<u>Module 3</u>	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function, distinguishable and indistinguishable particles, partition function and thermodynamic functions, separation of partition function- translational,	15 Hrs.	3,4
<u>Module 3</u>	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function, distinguishable and indistinguishable particles, partition function and thermodynamic functions, separation of partition function- translational, rotational, vibrational, and electronic partition	15 Hrs.	3,4
<u>Module 3</u>	Statistical Mechanics Brief history about the macroscopic and microscopic approach in science, permutation, probability, Stirling's approximation, macrostate and microstates, equal a priori principle and thermodynamic probability, thermodynamic probability and entropy, phase-space, ensemble, types of ensembles. Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function, distinguishable and indistinguishable particles, partition function and thermodynamic functions, separation of partition function- translational, rotational, vibrational, and electronic partition functions, partition function for bydrogen Thermal de-Broglie wavelength	15 Hrs.	3,4

Module 4	Calculation of thermodynamic	15	4,6
	functions and equilibrium constants, Sackur-Tetrode	Hrs.	
	equation, statistical		
	formulation of third law of thermodynamics, residual		
	entropy, heat capacity of		
	gases - classical and quantum theories. Heat capacity of solids: the vibrational		
	properties of solids, Dulong and Petit's law, Einstein's		
	theory and its		
	limitations, Debye theory and its limitations. Need for		
	quantum statistics,		
	Bosons and Fermions, Bose-Einstein statistics: Bose-		
	Einstein distribution law,		
	Bose-Einstein condensation, first order and higher		
	order phase transitions,		
	liquid helium, Fermi-Dirac statistics: Fermi-Dirac		
	distribution law, application		
	in electron gas, thermionic emission. Comparison of		
	three statistic		

Teaching and Learning	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Approach	
Assessment	Mode of Assessment Continuous Internal Assessment (CIA)
Types	Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Assignments Semester End examination

MAHATMA GANDHI UNIVERSITY

LAB I- SYNTHESIS AND CHARACTERIZATION OF ADVANCED MATERIALS

School Name	School of Energy Materials			
Programme	M.Sc. Material Science (Spe	cialization in En	ergy Science)	
Course Name	LAB I- SYNTHESIS AND CI	HARACTERIZA	TION OF ADVANCED	
	MATERIALS			
Type of Course	Core			
Course Code	EMM23C25			
Course	The lab course will include d	etail on solid sta	te synthesis, solution-	
Summary &	based synthesis (co-precipita	ation, solvotherr	nal, sol-gel, microwave	
Justification	synthesis), synthesis from th	e melt, combust	tion synthesis, gas	
	phase synthesis for thin films (PVD, CVD, sputtering), and polymer			
	synthesis.			
	It will also cover scattering te	echniques (e.g.)	XRD, PDF),	
	spectroscopic techniques (e.	.g. IR, Raman, X	(PS, XAS, UV-vis),	
	imaging (e.g. SEM, AFM, TE	M), methods for	r studying materials	
	properties such as electroch	emical, mechan	ical and magnetic	
	characterisation.		-	
Semester	1	Credit	3	

Total Student Learning Time (SLT)	Learning Approach	ecture	utorial	ractical	thers	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	40	40	<u>-</u>	40	120
Pre-requisite	Basic synthesis lab	skills				
Others- Library, s	seminar and assignme	ent prep	arations	, test, jo	urnal, di	iscussion etc.

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Synthesise a material by a variety of different synthesis routes, having assessed their suitability	U, A	6,8
2	Critically analyse how and why the nature of the chemical bonding in a material is influenced by the synthetic pathway and how it impacts the resulting material properties	U, A	2
3	evaluate the suitability of synthesis and characterisation methodologies for a material targeted towards a particular application	U, A	2,7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching	Classroom Procedure (Mode of transaction)			
and	Authentic learning, case-based learning, collaborative learning,			
Learning	seminar group activities			
Approach	seminar, group activities.			
Assessment	Mode of Assessment			
Types	Continuous Internal Assessment (CIA)			
	Seminar Presentation – a theme is to be discussed and identified			
	to prepare a paper and present in the seminar			
	Assignments			
	Semester End examination			
1				

Autor and the state	MAHATMA GANDHI UNIVERSITY
	Internship/ Miniproject

School Name	School of Energy Materials
Programme	M. Sc. Material Science (Specialization in Energy Science)
Course Name	Internship/ Miniproject
Type of	Core
Course	
Course Code	EMM23C85

Course	The candidate shall do 20 days internship in any of the						
Summary &	industries or do a miniproject. The report will be evaluated by						
Justification	department.	ei oi expe			CLOI	OI THE	5
-							
Semester	1		Credit			3	
Total Student							
Learning Time (SLT)	Learning Approach	Lectur e	Tutorial	Practica I	Ot	hers	Total Learning Hours
	Authentic learning						
	Collaborati ve learning	-	40	40	40	I	120
	Case based learning						
Pre-requisites	Aptitude for the realm of nanotechnol	research interface logy. Liter	work in on between p ature surve	e of the inte hysical scie ey.	erdi: enc	sciplir e and	hary areas in
Others- Library, etc.	seminar and	assignm	ent prepara	ations, test,	jou	ırnal, o	discussion

ELECTIVE COURSES:

MAHATMA GANDHI UNIVERSITY
Basics of Energy Science
School of Energy Materials
M.Sc. Material Science (Specialization in Energy Science)
Basics of Energy Science
Elective
3
EMM23E51

Course Summary & Justification Semester	This course looks consequences of c distances, explored I	at phys quantum p by nucle	ics within physics at ar physics	the nucle the high e 5.	eus, exp energies,	oloring the and short
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	30	30	0	30	90
Pre- requisite	Basic knowledge o	n atomic a	and nuclea	ar forces.		
Others- Librai discussion etc	ry, field work, semi	nar and	assignmei	nt prepara	tions, tes	st, journal,

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO	
No.	Upon completion of this course, students will be able to;	Domains	No.	
1	Understanding the different types of nuclear energy.	U, E	1,2	
2	Understand the impact of radiation damages.	U,An	2,3,6	
3	Illustrate different nuclear fuels.	A,An	2,4, 6	
4	General ideas about future nuclear reactors.	U,I, S	2,6	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create				
(C), S	(C), Skill (S), Interest (I) and Appreciation (Ap)			

Module	Module Content	Hrs	CO.
No:			No.
No: Module 1	Basics of Solar Energy Energy and development, Units and measurements, Solar spectrum – Electromagnetic spectrum. Energy balance of the earth, solar constant for earth, specialty and potential – Sun – Earth – Solar Radiation, beam and diffuse – measurement – estimation of average solar radiation on horizontal and tilted surfaces – problems – applications. Measurement of solar radiation – Pyranometer, Pyrheliometer, Sunshine recorder. Solar time - Local apparent time (LAT), equation of time (E), Solar radiation geometry - Earth- Sun angles – Solar angles. Calculation of angle of incidence - Surface facing due south, horizontal, inclined surface and vertical surface. Solar day length – Sun path diagram – Shadow determination. Estimation of Sunshine hours at different places in India. Calculation of total solar radiation on horizontal	15 Hrs.	No.
	and tilted surfaces. Prediction of solar radiation availability, Capturing solar radiation – physical principles of collection – types – liquid flat plate collectors – construction details – performance analysis – concentrating collection – flat plate collectors with plane reflectors – cylindrical parabolic		
	collectors – Orientation and tracking.		

Module 2	Basics of Energy Conversion	15	2
	Energy Conversion routes, Direct and Indirect way of Energy Conversion, Principles of heat and mass transfer, Thermodynamics, Fluid statics and dynamics, Electricity generation and distribution	Hrs.	
Madula 2	Energy Conversion	15	3
Module 3	Introduction to Energy conservation, Approach and modem techniques, Benefits, Trend, Energy conservation technology (Thermal Energy), Energy conservation in Energy Intensive Industries, collection, Limitation and heat and its potential applications, Waste heat survey and measurements Data collection, Limitation and heat affecting factors Heat recovery equipment and systems, Heat Exchangers, Incinerators Regenerators and Recuperates. Need and importance of Energy storage in conventional and non-conventional Energy systems. Technical aspects (Measurements, Quantify), Various forms of Energy storage: thermal, chemical Mechanical, Electrical and Nuclear	Hrs.	3
Module 4	Energy Demand and Utilization Introduction and Historical Demand, Understanding Current Demand, Energy Markets, Energy and the rebound Effect, Residential Energy, Commercial Energy, Transportation	15 Hrs.	4
	Energy and Environment Impact of Energy on Environment, Flow of Energy in Ecological system, Environment Degradation due to Energy, Control of pollution from Energy.		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment Types	 Mode of Assessment 7. Continuous Internal Assessment (CIA) 8. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 9. Assignments C. Semester End examination

Textbooks:

- The Science of Energy, Roger G Newton, World Scientific.
 Energy Recourses and Systems (Volume 1), Tushar Ghosh, Mark Prelas, Springer.
- 3. Energy Technology, O. P. Gupta, Khanna Publishing

Raa Spranger	MAHATMA GANDHI UNIVERSITY
	ENERGY POLICIES AND MANAGEMENT
School Name	School of Energy Materials (SEM)
Programme	MSc. Material Science (Specialization in Energy Science)
Course Name	ENERGY POLICIES AND MANAGEMENT
Course Credit	3
Type of Course	Elective
Course Code	EMM23E52

Course Summary & Justification	Inis course provides an advanced introduction to the design and delivery of energy policy at various levels. Energy presents theoretical and practical challenges across many disciplines and professions, especially in the context of economic development and environmental sustainability at scales ranging from local to global. This course is intended to provide a broad overview of the institutions, legal frameworks, technologies, and markets involved in energy policy by exploring theories and case studies across these topics, with an emphasis on the energy transition necessitated by climate change.					
Semester	1					
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutoria I	Practic al	Other s	Total Learni ng Hours
		30	30	0	30	90
Pre-requisite	General Chemistry a Elementary Semicor Materials.	and Physi nductor T	cs, Introd heory, Th	uctory Ma ermodyna	aterials S amics of	cience,

СО	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	To facilitate the students to achieve a clear conceptual understanding of technical and commercial aspects of energy conservation	U, R	1,2
2	Conceptual knowledge of the technology, economics and regulation related issues associated with energy conservation and energy auditing	U, C	2,4
3	Performance analysis of energy conservation opportunities.	U, I	2,3
4	A foundation for students who want to take additional courses on energy law, markets, technology, or policy.	A, S	3,6
5	Ability to analyse the viability of energy conservation projects	U, R	3,7

6	Analysis of economics of energy conservation opportunities in electrical and thermal utilities and reporting of energy audit	E, S	4,7
7	Advocacy of strategic and policy recommendations on energy conservation	An, I	6,8

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module No:	Module Content	Hrs	CO. No.
1	Basic principles of energy audit Energy audit – Definition, concept, type of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes – Energy audit of industries – Energy saving potential, energy audit of process industry, thermal power station and Building.	10	1,2
2	Energy management Principles of energy management -Organizing energy management program, initiating, planning, controlling, promoting, monitoring, reporting – Energy manager, Qualities and functions, Language, Questionnaire – Check list for top management.	8	3,4
3	Economic aspects and analysis Economic analysis – Depreciation Methods, time value of money, rate of return, present worth method, replacement analysis, life cycle costing analysis - Energy efficient motors - Calculation of simple payback method, net present worth method- Power factor correction, lighting – Applications of life cycle cost analysis - Return on investment.	10	5,7
4	Energy Policy Planning and Implementation Key Elements: Force Field Analysis, Energy Policy-Purpose, Perspective, Contents and Formulation. Format and Ratification, Organizing: Location of Energy Manager, Top Management Support, Managerial functions, Role and responsibilities of Energy Manager, Accountability. Motivating– Motivation of employees, Requirements for Energy Action Planning.	10	5,6

	Information Systems: Designing, Barriers, Strategies, Marketing and Communicating Training and Planning.		
5	Energy Balance & MIS First law of efficiency and Second law of efficiency, Facility as an Energy system, Methods for preparing process flow, Materials and Energy Balance diagram, Identification of losses, Improvements. Energy Balance sheet and Management Information System (MIS), Energy Modelling and Optimization. Instruments for Audit and Monitoring Energy and Energy Savings, Types of instruments and Accuracy	12	6

Teaching	Classroom Procedure (Mode of transaction)
and	Contact classes, Tutorials, Seminar, Assignments, Authentic
Learning	learning, Library work, independent studies, Presentation by
Approach	individual student
Assessment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	 Surprise test
	 Internal Test – Objective and descriptive answer type
	 Submitting assignments
	 Seminar Presentation – select a topic of choice in the
	concerned area and present in the seminar
	B. Semester End examination

REFERENCES:

- 1. Energy Management by W.R.Murphy, G.Mckay. Butterworths.
- 2. Energy Management Principles by C.B.Smith, Pergamon Press.
- 3. Capehart B.L., Turner W.C., Kennedy W.J. (2011). Guide to Energy
- Management (7th Edition). Fairmont Press. ISBN: 1439883483.
- 4. Patrick D.R., Fardo S.W., Richardson R.E., Fardo B.W. (2014). Energy
- Conservation Guidebook (3rd Edition). Fairmont Press. ISBN: 1482255693.

Tanan sugarunga	MAHATMA GANDHI UNIVERSITY Thin Film Science and Technology
School Name	School of Energy Materials
Programme	MSc. Material Science (Specialization in Energy Science)
Course Name	Thin Film Science and Technology
Type of Course	Elective
Credit Value	2
Course Code	EMM23E23

Course	To impart the modern ideas of thin film technologies used in various					
Summary &	solid state physics and day today applications.					
Justification						
Semester	1					
Total Student						Total
Learning Time	Learning	Lecture	Tutorial	Practical	Others	Learning
(SLT)	Approach					Hours
	Authentic	30	20	0	30	80
	learning					
	Collaborative					
	learning					
	Case based					
	learning					
Pre-requisite	Basic knowledge ir	n vacuum	science ai	nd electrica	al propert	ies.
Others- Library, field work, seminar and assignment preparations, test, journal,						
discussion etc.						

CO	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	To familiarise with the vacuum science and different thin	U,R	1,2
	film deposition methods.		
2	To understand the nuclear theories of thin film formation.	U	2
3	To familiarise with the measurements techniques of the	An,E	2,9
	properties of thin films.		
4	Awareness and knowledge of various applications of thin	U,An	2,6
	films in semiconductor devices and in day today life.		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create			
(C), Skill (S), Interest (I) and Appreciation (Ap)			
COURSE CONTENT			

Module	Module Content	Hrs	CO.
NO: Modulo 1	Veguum Technology: High veguum production:	10	NO.
	Machanical numps - Diffusion numps-Chagonic	lU Ure	•
	numps - Cottor numps - ion numps-basics of ultra-	1115.	
	high vacuum Mossurement of Vacuum: Mel ood		
	aguae - Thermal conductivity aguaes - Cold cathode		
	and bot cathodo ionisation gauges - Cold Califorde		
	system, vacuum look dotaction; balium look dotactor		
	system- vacuum leak detection. Helium leak detector,		
Modulo 2	This film growth techniques: Divised Vapour	10	12
	Deposition: Vacuum evaporation Evaporation theory	IV Hre	1,2
	Deposition. Vacuum evaporation – Evaporation theory	піз.	
	- Rate of evaporation - Hertz-Rundsen equation - Free		
	Evaporation and enusion – Evaporation mechanisms -		
	Directionality of evaporating molecules - vapour		
	sources - whe and metal lons - Electron beam gun-		
	sputtering - Glow discharge sputtering - Blas		
	sputtering - Reactive sputtering - Magnetron sputtering		
	- Ion beam sputtering - PLD- epitaxial limits- MBE		
	Chemical vapour deposition: conventional CVD,		
	Plasma enhance CVD, MOCVD, Atomic layer		
	Deposition Film thickness measurements: Optical		
	Methods - basics of multilayer modelling- Ellipsometry		
	-Other techniques: Electrical - Mechanical - Micro-		
Madula	balance - Quarts crystal monitor - X ray reflectivity.	40	•
Module 3	Nucleation I neories: Condensation process -	10	3
	I neories of Nucleation - Capillarity theory - Atomistic	Hrs.	
	theory - Comparison - stages of film growth -		
	Incorporation of defects during growth. Optical		
	properties: Reflection and transmission at an interface		
	- Reflection and transmission by a single film - Optical		
	constants - Refractive index measurement techniques-		
	Reflectivity variation with thickness Patterned films:		
	lithography techniques - film etching methods.		
Module 4	Electrical Properties: Electrical Properties: Sources	10	4
	of resistivity - sheet resistance – electron mobility- Hall	Hrs.	
	Effect - ICR - Influence of thickness on resistance -		
	Theories of size effect – Theories of conduction in		
	discontinuous films - Electronic conduction in thin		
	insulating films- MIS structure -Dielectric properties -		
	D.C. conduction mechanisms - High and low field		
	conduction - Lemperature dependence - space charge		
	limited conduction - A.C. conduction mechanisms		
	Application of thin films: electrodes, transparent		
	conducting oxides, thin film devices: LED, TFT, - Solar		
	cells – optical and decorative coatings - dichroic		
	coatings- biomedical coatings - tribological coatings.		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment Types	 Mode of Assessment 7. Continuous Internal Assessment (CIA) 8. Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar 9. Assignments C. Semester End examination

Reference

1. Hand Book of Thin Film Technology, Maissel and Glang, McGraw Hill Higher Education (1970)

2. Materials science of thin films deposition and structures, Milton Ohring, Academic press, 2006.

3. Vacuum deposition of thin films, L. Holland, Chapman and Hall.4. Glow discharge processes, B. Chapman, Wiley, New York.

5. Physics of Non-Metallic Thin Films, Dupy and Kachard, Plenum Press (1976).

6. Scientific Foundations of Vacuum Technology, S. Dushman and J.M. Lafferty, John Wiley & Sons, Inc.; 2nd Ed. (1962).

7. Thin Film Phenomena, K.L. Choppra, McGraw-Hill Inc., US (1969.

8. O. S. Heavens, Optical Properties of Thin Films, by, Dover Publications, Newyork 1991

9. Donald L. Smith `Thin Film deposition principle and Practice's, McGraw Hill international Edition, 1995.

10. Various web resources and research papers.

A REAL PROPERTY OF A REAL PROPER	МАНАТМА С	ANDHI UI	NIVERSITY	(
ित्ताया अप्रुतमप्रनुत	Bio Energy T	Bio Energy Technology						
School Name	School of En	ergy Mate	erials (SEN	1)				
Programme	MSc. Materia	I Science	(Specializ	ation in En	ergy Scien	ice)		
Course Name	Bio Energy T	echnolog	у					
Course Credit	2							
Type of Course	ELECTIVE							
Course Code	EMM23E24							
Course Summary & Justification	This course aims to develop researchers who can provide fundamental inputs required to meet the challenges of a sustainable energy future. Bioenergy is seen as an important component in the future sustainable energy system, which itself requires knowledge and understandings for sustainable utilisations of biomass fuels. The course provides in-depth knowledge of fuel characterisation, treatement and conversion technologies, environmental consequences, and resource utilisations related to bioenergy. Moreover, the course gives insight into different bioenergy systems, including bioheat, biopower, biofuel and biogas, and their combinations, with consideration of process integration for heat and material recovery. For biomass conversion technologies, emphasis will be placed on the thermochemcial approaches, which include combustion, gasification and pyrolysis. The biological approaches, bioethanol and biogas productions, are also be treated in the course, but to a lesser extent. System design and process simulation is an important part of the course.							
Semester	1							
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning Collaborativ e learning	30	30	0	30	90		

	Case based learning						
Pre-requisiteBasics of Energy: Energy and deve spectrum, Electromagnetic spectru			lopment, Un m.	its and me	asurements	s, Solar	
COURSE O	UTCOMES (CO)						
CO	Expected	Course Ou	tcome	Lea	rning	PSO	
No.	•			Don	nains	No.	
1	Acquiring the kno energy	cquiring the knowledge of biomass			'n	1,2	
2	To design bio-ene	design bio-energy systems				2,4	
3	Understanding Bi renewable energy	iderstanding Biomass as a newable energy and its importance			;	2,3,5	
4	Develop knowled background and s systems.	evelop knowledge on historical ackground and scope of geothermal rstems.			,	3,6	
5	Understand the c these subjects for	nderstand the concepts on Bio Gas ese subjects for further learning.		U, R		4,7	
6	Understand the c these subjects for	lerstand the concepts on Bio Gas se subjects for further learning.			р.	7,8,10	
*Rei	nember (R), Unde	rstand (U),	Apply (A)	, Analyse (/	An), Evalu	ate (E),	

Create (C), Skill (S), Interest (I) and Appreciation (Ap) COURSE CONTENT

Module No:	Module Content	Hrs	CO. No.
1	Introduction : Biomass- types, advantages and drawbacks, Indian scenario, characteristics, carbon neutrality, conversion mechanisms, fuel assessment studies	8	1,2
2	Bio methanation : Microbial systems, phases in biogas production, parameters affecting gas production, effect of additives on biogas yield, possible feed stocks. Biogas plants, types, design, constructional details and comparison, biogas appliances, Burner, illumination and power generation, effect on engine performance.	8	1,3
3	Combustion: Perfect, complete and incomplete, equivalence ratio, fixed Bed, fluid Bed, fuel and ash handling, steam cost comparison with conventional fuels. Briquetting: types of	8	4,5

	Briquetting, merits and demerits, feed requirements and pre-processing, advantages, drawbacks.		
4	Gasification : Types, comparison, application, performance evaluation, economics, dual fuel engines, 100 % Gas Engines, engine characteristics on gas mode, gas cooling and cleaning train.	8	6
5	Pyrolysis and Carbonization : Types, process governing parameters, thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetry, Typical yield rates.	8	5,6

Teaching	Classroom Procedure (Mode of transaction)
and	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library
Learning	work, independent studies, Presentation by individual student
Approach	
Assessment	Mode of Assessment
Types	C. Continuous Internal Assessment (CIA)
	 Surprise test
	 Internal Test – Objective and descriptive answer type
	 Submitting assignments
	 Seminar Presentation – select a topic of choice in the concerned
	area and present in the seminar
	D. Semester End examination

REFERENCES

1. David Boyles, (1984) Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester

2. Khandelwal, K.C, Mahdi, S.S. (1986) Biogas Technology – A Practical Handbook, Tata McGraw Hill

3. Mahaeswari, R.C. (1997) Bio Energy for Rural Energisation, Concepts Publication

4. Tom B Reed, (1981) Biomass Gasification – Principles and Technology, Noyce Data Corporation, Best Practises Manual for Biomass Briquetting, I R E D A, 1997

5. Eriksson S. and M. Prior, (1990) The briquetting of Agricultural wastes for fuel, FAO Energy and Environment paper

6. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S.

MAHATMA GANDHI UNIVERSITY

Polymer Chemistry

School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Polymer Chemistry
Type of Course	Elective
Credit Value	2
Course Code	EMM23E25

Course Summary & Justification	as well as multidisciplinary components. This course is designed as an interdisciplinary course that includes fundamental as well as in-depth knowledge of the polymer science. The syllabus has been designed to cover the fundamental understanding of different fields of polymer chemistry with special emphasis on polymer synthesis and related topics thereby enable the students to work in frontier areas of polymer sciences. This comprises of the history of polymer science and its relevance in the development of human civilization. The syllabus covers the significance polymer molecular weight and its relation with structure and property of various polymers. This course also covers detailed study of the polymerisation reactions and techniques for polymer synthesis. This course further offers an awareness and understanding of the contemporary trends and growth in the field of polymer science. After the completion of this course, students will be able to understand the basics associated with polymer materials and the method/mechanism of its synthesis.						
Semester	1	1	T	1	1		
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Lectures, Group discussions, Seminars, Independant Learning etc	30	30	0	30	90	
Pre- requisite	Understanding of Or	ganic Ch	emistry (Ur	ndergradu	late leve	el).	

CO No.	Expected Course Outcome	Learning Domains	PSO No.		
1	To Acquire a sound knowledge about the fundamentals and importance of Polymer chemistry.	R, U, An	1,2,3, 7		
2	To compare and correlate various polymerization reactions and techniques.	U, A, An	1,2,3		
3	To understand the peculiarities of polymer molecular weight and various determination techniques.	U, A	1,2		
3	To Correlate the structure and property relationship in polymeric materials.	An,S	1,4,5		
	To outline the basic concepts of thermal transitions in polymers and the determination methods for it.	U, A, An	1,2,3		
5	To understand and explore properties and advance applications of different polymers in diverse areas.	U, A, An, E,C, I	1,2,3, 6,7,8, 9		
*Ren (C), :	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module No:	Module Content	Hrs	CO. No.
<u>Module 1</u>	Concept of polymer & macromolecules, definition, functionality, classification of polymers. Polymerization reactions: Addition (free radical polymerization reaction, anionic and cationic polymerization, coordination polymerization, Ziegler Natta polymerization) and Condensation polymerization, Co-polymerization. Polymerization techniques: Bulk, solution, suspension, emulsion polymerizations, melt and interfacial polycondensations.	15 Hrs.	1, 2
Module 2	Concept of molecular weight of polymers : number average, weight average, Z average and viscosity average molecular weight, molecular weight distribution and polydispersity index (PDI). Determination of molecular weight of polymers: Light scattering technique, Membrane Osmometry, Gel permeation chromatography (GPC), viscometry, etc.	15 Hrs.	3, 4

<u>Module 3</u>	Crystalline and amorphous polymers, Factors affecting crystallinity and chain flexibility of polymers. Effect of Crystallinity on the properties of polymers. Thermal transitions in polymers: Glass transition temperature (T_g) and crystalline melting points (T_m), Factors affecting Glass transition temperature, methods to determine T_g and T_m : DSC, TMA, DMA etc.	15 Hrs.	4
<u>Module 4</u>	Properties and Applications of: Specialty Polymers, Poly electrolytes, ionomers (ion containing polymers), conducting polymers, electroluminescent polymers, fluoropolymers, polymer colloids, thermoplastic elastomers (TPE), polymer blends (heterogeneous plastics), thermally stable polymers, biomedical polymers.	15 Hrs.	5

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library work, independent studies, Presentation by individual student				
Assessment	Mode of Assessment				
Types	A. Continuous Internal Assessment (CIA)				
	Surprise test				
	Internal Test – Objective and descriptive answer type				
	Submitting assignments				
	Seminar Presentation – select a topic of choice in the				
	concerned area and present in the seminar				
	B. Semester End examination				

REFERENCES

- 1. V.R. Gowariker, N.V. Viswanathan, J. Sreedhar, Polymer Science, New Age International, 2010
- 2. P. Bahadur, N. V. Sastry, Principles of Polymer Science, Narosa publishing house Pvt. Ltd., New Delhi, 2005.
- 3. M. S. Bhatnagar, A Textbook of Polymers, Vol II, S. Chand & Company Ltd., 2004.
- 4. Premamoy Ghosh, Fibre Science & Technology, McGraw-Hill professional, 2004.
- 5. D. C. Blackley, Polymer lattices: Science and Technology, Springer Netherlands, 2012
- 6. J.M.G. Cowie, V. Arrighi, Polymers: Chemistry & Physics of Modern Materials, 3rd Edn., CRC Press, 2008.

- 7. G.G. Odian, Principles of Polymerization, 4th Edn, John Wiley & Sons, 2004.
- 8. P.J. Flory, Principles of Polymer Chemistry, Cornel University Press. London, 1953.
- 9. F.W.Billmeyer, Text Book of Polymer Science, Wiley interscience, 1976.

School Name	School of Energy Materials					
Programme	M.Sc. Material Scier	nce (Spe	ecializatio	on in En	ergy sci	ence)
Course Name	Machine Learning	for Ener	gy Scie	nce		
Type of Course	Core					
Course Code	EMM23E53					
Course Summary & Justification	With the increase of human society and its vital need for energy, energy systems play an important and decisive role in various sectors such as; residential, industry, and transportation. To accelerate the process and improve the methods of responding to this problem, the use of models and algorithms based on artificial intelligence has become common and mandatory. This course aims to provides basic understanding of machine learning and Artificial Intelligence, prospect of machine learning for energy efficiency and sustainability and Software knowledge on energy management					
Semester	1		Credit		2	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning	30	30	-	30	90

	Case based learning					
Pre-requisite	Basic computer know	wledge,	data ana	alysis an	d funda	mental
	knowledge in Energy	/ param	eters.			
Others- Library, s	seminar and assignme	ent prep	arations	, test, jo	urnal, di	scussion etc.

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Understanding the fundamentals of machine learning and AI.	U, A	6,8
2	Familiarity with various methods of machine learning	U, A	2
3	Energy efficiency and Smart grid management by machine learning	U, A	2,7
4	Understanding of the renewable energy forecasting by machine learning	S, An, E	1,2,4
*Reme (C), SI	ember (R), Understand (U), Apply (A), Analyse (An kill (S), Interest (I) and Appreciation (Ap)), Evaluate (E), Create

Module No:	Module Content	Hrs	CO.No.
1	Background and theory of AI, machine learning for energy applications, available tools for AI applications in the energy sector, fundamental concepts of inference and prediction, opportunity and limitations of machine learning, Motivation and methods for inferential machine leaning methods, Dimensionality Reduction and Clustering, predictive machine learning methods, k Nearest Neighbors, Prediction: Tree-based Regression, ensemble methods, neural network.	15	1

2	Renewable Energy Forecasting, prediction model, statistical model, AI based model, hybrid model, prediction of solar irradiance, prediction of wind energy and hydro energy.	20	2
3	Machine learning for smart grid, Introduction to smart grid, Smart Grid–Need, Definitions, Concept, Functions & Barriers. Present development & International scenario in Smart Grid. Smart Grid – System architecture and Stakeholders. Communication Technologies for Smart Grid, Interoperability, Protocols, Standards for Information Exchange. Information Security in smart grid, Cyber Security standards. Smart grid management by machine learning, Future energy systems and software.	10	3
4	Case study or group project.	15	4

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment	Mode of Assessment
Types	4. Continuous Internal Assessment (CIA)
	5. Seminar Presentation – a theme is to be discussed and
	identified to prepare a paper and present in the seminar
	6. Assignments
	2. Semester End examination

References

1. Machine Learning for Energy Systems; ISBN 978-3-03943-382-7 (Hbk); ISBN 978-3-03943-383-4 (PDF);Denis N. Sidorov (Ed.) https://www.mdpi.com/books/pdfview/book/3201

2. Internet of Energy for Smart Cities; Machine Learning Models and Techniques;Edited By Anish Jindal, Neeraj Kumar, Gagangeet Singh Aujla; ISBN 9780367497750;July 20, 2021 Forthcoming by CRC Press; 322 Pages 112 B/W Illustrations

SEMESTER II

		MAHATMA GANDHI UNIVERSITY						
		Optical and Magnetic Properties of Materials						
School Name	•	School of Ener	chool of Energy Materials					
Programme		M. Sc. Material	Science	(Specializ	zation in E	inergy S	cience)	
Course Name		Optical and Ma	agnetic P	roperties	of Materia	ls		
Type of Cour	se	Core						
Credit Value		3						
Course Code		EMM23C86						
Course Summary & Justification	Th of by ind pri na in	e course aims to provide in-depth knowledge of physical properties the solids and helps in developing creative skills among students understanding the principles of lasers and applications. Topics clude electronic and optical properties of solids, revising the basic nciples of lasers, high power pulsed lasers like Q-switched nosecond lasers and amplifiers. Also it elaborates the nonlinearity						
Semester	nester II							
Total Student Learning Time (SLT)	Le Ap	earning oproach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Au lea Co lea Ca lea	uthentic arning ollaborative arning ase based arning	40	40	0	40	120	
Pre-	Fι	undamental know	ledge in s	olid state	laser and	non-linea	ar optics.	
requisite	<u> </u>	field work as	inor and	oolanma	nt proport	tions to	t iournal	
Others- Library, field work, seminar and assignment preparations, test, journal, discussion etc.								

CO No	Expected Course Outcome	Learning Domains	PSO No
1	Upon completion of this course, students will be able to; In-depth knowledge of physical properties of the solids	U, A	2,7
2	Fundamentals of lasers and illustrate pulse shortening mechanisms and chirped pulse amplification	An, E	2,9
3	To explain different types of interactions in a magnetic solid and ordered magnetic structures.	U, A, An	2,6, 9
4	Elaborate high power laser interaction with material and nonlinearity in materials	U, An	2,6
*Ren	nember (R), Understand (U), Apply (A), Analyse (C), Skill (S), Interest (I) and Apprec	e (An), Evaluate (E), iation (Ap)	Create

Module No:	Module Content	Hrs	CO. No.
<u>Module</u> <u>1</u>	The Basics of Electrons in Solids: The electron; Problems with classical description; Wave-particle duality; De Broglie theorem; Bohr model for hydrogen; Born postulate; Schrödinger's equation; Solving the wave equation; Particle in a 1-D box & quantum tunneling; Electrons in a periodic potential; Bloch waves; Energy (E) versus wavevector (k) dispersion plots.	15	1
<u>Module</u> <u>2</u>	Electronic structure of solids – free electron theory, band theory & Zone theory, density of states, band structure, direct and indirect band gaps, Brillouin zones; Electrical properties - electrical conductivity, Hall effect, Superconductivity- Meissner effect, brief discussion of Cooper theory of superconductivity; Low temperature and high temperature superconductivity	15	1

<u>Module</u> <u>4</u>	Optical properties - photo conductivity, luminescence, colour centers, refraction & birefringence; Magnetic properties - diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism & ferrimagnetism; Thermal properties - thermal conductivity & specific heat Solid state reactions: Brief introduction.	15	2
<u>Module</u> <u>4</u>	Basics of lasers (Population Inversion - Stimulated emission - Einstein Coefficients), Pulsed high power lasers, Q switching, Mode locking, Methods of producing mode locking, Pulse shortening by self- phase modulation, Group velocity dispersion, gratings or prisms.	15	3
<u>Module</u> <u>5</u>	Nonlinear Optics, Nonlinear Wave equation, Optical rectification, Harmonic Generation, Phase matching, Third Harmonic generation, Parametric oscillator, B integral - self focusing, Two photon absorption.	15	4

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment Types	Mode of Assessment Continuous Internal Assessment (CIA) Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Assignments Semester End examination

References

- 1. Introduction to Atomic Spectra, H. E. White, McGraw-Hill Inc., US (1934).
- 2. Laser fundamentals, 2nd Ed., William T Silfvast, Cambridge University Press (2008).
- 3. Lasers Theory and Applications, 2nd Ed., K. Thayagarajan and A.K Ghatak, Springer (2011).
- 4. O. S. Heavens, Optical Properties of Thin Films, by, Dover Publications, Newyork 1991

- 5. S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980.
- 6. Laser Physics, Peter W. Milonni and Joseph H. Eberly, Wiley-Blackwell (2010).
- 7. Solid State Physics by N W Ashcroft and N D Mermin
- 8. Magnetism in Condensed Matter by S. Blundell
- 9. Introduction to Magnetic Materials by B. D. Cullity
| | MAHATMA GANDHI UNIVERSITY |
|---------------------|---|
| गिताया अप्रुतपारणुर | Synthesis and Applications of Nanocomposites |
| School Name | School of Energy Materials |
| Programme | M. Sc Material Science (Specialization in Energy Science) |
| Course Name | Synthesis and Applications of Nanocomposites |
| Type of Course | Core |
| Credit Value | 3 |
| Course Code | EMM23C87 |

Course Summary & Justification	This course aim polymerization pro- concepts on gla techniques, facto familiarize the mol To give the conc classification. Un nanocomposites, of also the synthes composites. The of different polymers processes associ materials and prooperties of plas processing techni molding, Thermo molding have be examples. The fur materials, propert secondary process been explained if opportunities in pr	ns to in pocess an ss trans rs affect ecular we cept of c Inderstan different ty is of nai course de and poly ated then cessing te tics, thern ques of forming, een explai idamenta ies of co sing meth in detail. imary and es has als	npart bas id techniq ition temp ing glass eight of pol- onducting ding the pes of nai- nocompos als with the mer comp- reof. The echniques, moplastics polymers compres ained with I concept a omposites ods of poly The vari- d secondar so been ex	sic knowle ues. To in perature, transition ymers and polymers, and polymers, e conce nofillers, na ites and of classificat the structu and thern such as a sion mold n the rele and classifi and the p ymeric matu ious issue ry processi plained.	edge or ntroduce various temper specialty discove of of anocompother me the basic the basic theb	n different the basic measuring rature. To polymers. ry and its polymer osites, and etal matrix c nature of nufacturing engineering mechanical he various n, Injection d specific composite as well as posites have enges and ymers and
Semester	I					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
		40	40	0	40	120
Pre- requisite	Basic knowledge of Chemistry (1st year level). Any discipline of mechanical engineering, production engineering, polymer technology, chemical engineering, chemistry and physics can complete the course.					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Different kind of polymers and their properties.	U	2,7
2	Concept of Molecular Weight and distribution.	U, A, R	1,2,6,7
3	Variation of properties of polymer by crystallinity and glass transition temperature, process of polymer degradation.	U, R	1,2
4	Different techniques of polymerization of polymers.	U, R, A	2
5	Concept of conducting polymers	U, R, A	1,3,6
6	The student will able to understand various structure of polymers and their effect on different properties of polymers and polymer nanocomposite.	U, A, I	4
7	Will understand basic elements, operation and applications of various microscopy techniques such as SEM, TEM and XRD for analysis of surface and structure of plastic products.	U, R, S, I, An	2,4
8	Effect of variation in the quantities & type of curing agents, additives & curing condition on the properties of polymer composites	U, A, R, An	1,2,5
9	Upon completion of the course, the students will have the knowledge of formulation for manufacturing, properties and applications of variety of polymer composites	U, R, S, I, An, A	2,3
10	The candidate will get basic knowledge of the properties of polymer composites, the common application of such materials and the engineering principles including material selection, fundamental relations, analysis methods and manufacturing methods.	U, A, R, S, I, An C	1,2,3
*Ren (C), \$	nember (R), Understand (U), Apply (A), Analyse (An), E Skill (S), Interest (I) and Appreciation (Ap)	valuate (E),	Create

Module	Module Content	Hrs	CO.
No:			No.
Module 1	Basic Aspects	10	1, 6
	Classification, Some basic definitions, Addition and	Hrs.	
	condensation polymerizations, and copolymerization,		
	Mechanism of free radical, cationic and anionic		
	polymerizations, Nomenclature, Tacticity, Glassy		
	solids: Glass transition and melting temperatures and		
	their determination by DSC - Factors affecting Tg,		
	importance of Tg, relationship between Tm and Tg and		
	their control - Crystallinity in polymers: Degree of		
	crystallinity, factors affecting crystallinity		
	of polymers, effect of crystallinity on the properties of		
	polymers. Polymerization Techniques: Bulk, Solution,		
	Suspension and Emulsion polymerizations-		
	Polymerization using metal catalysts		
	and surfactants.		
Module 2	Molecular weight of polymers	13	2, 6
	Number average, weight average and viscosity	Hrs.	
	average molecular weights of polymers -		
	Determination of molecular weight of polymers by		
	GPC and viscometry methods. Specialty		
	polymers:Bio-polymers, Bio-degradable polymers,		
	Fire retardant / Thermally stable polymers, Polymer		
	electrolytes, Liquid armor polymers and Liquid		
	crystalline polymers.		

Module 3	Conducting Polymers	12	5,6
	Discovery, Structural characteristics and doping	Hrs.	
	concept, Charge carriers and conducting mechanism,		
	Classification of conducting polymers: Intrinsic and		
	extrinsic conducting polymers, Chemical and		
	electrochemical methods of the synthesis of		
	conducting polymers, Applications of conducting		
	polymers in corrosion protection, sensors, electronic		
	and		
	electrochemical energy devices.		
Module 4	Polymer Nanocomposites	15	6, 7,
	Definition of nanocomposites, Nanofillers,	Hrs.	8, 9,
	Classification of nanofillers, Synthesis and properties		10
	of nanofillers, Types of nanocomposites, Synthesis of		
	nanocomposites: Direct mixing, solution mixing, In-situ		
	polymerization, Polymer/ Metal oxide		
	nanocomposites, diblockcopolymer-		
	basednanocomposites, Polymer/CNTs and		
	Polymer/Nanoclay based composites and their		
	properties and functional applications.		
Module 5	Other Kinds of Nanocomposites	10	1, 6,
	Fractal based Glass, metal nanocomposites, Core-	Hrs.	9, 10
	shell structured nanocomposites, Super hard		
	nanocomposites, Self-cleaning nanocomposites,		
	Metal matrix nanocomposites: Metal with nanoceramic		
	fillers such as SiC, CeO2, TiO2, ZrO2 PTFE,		
	CNTs and their mechanical, corrosion resistance		
	properties and functional applications.		

Teaching	Classroom Procedure (Mode of transaction)					
and Learning Approach	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library work, independent studies, Presentation by individual student					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Surprise test					
	Internal Test – Objective and descriptive answer type					
	Submitting assignments					
	Seminar Presentation – select a topic of choice in the concerned area and present in the seminar					
	B. Semester End examination					

REFERENCES

- 1. Alfred Ruiden, Elements of Polymer Science and Engineering, Elsevier Science, 1998.
- Bill Meyer, A Text Book of Polymer Chemistry, John Wiley & Sons, Singapore, 1994.
- 3. Gowariker and Viswanathan, Polymer Science, Wiley Eastern, 1986.
- 4. Nanostructured Conductive Polymers, Editor. Ali Eftekhari, Wiley, 2010.
- Nanocomposites Science and Technology P. M. Ajayan, L.S. Schadler, P. V. Braun, WileyVCH, 2004.
- 6. GeorgeOdian, Principles of Polymerization, John Wiley & Sons, 1933
- 7. Conducting polymers with micro or nano meter structure, Meixiang Wan, Springer, 2008.
- 8. Polymer-Clay Nanocomposites, T.J. Pinnayain, G.W.Beall, Wiley, New York, 2001.
- 9. Composite Materials, Deborah D.L.Chung, Springer, 2002.

	MAHATMA GANDHI UNIVERSITY							
विद्याया अपूरतपाउनुत	Advanced Functiona	Advanced Functional Materials						
School Name	School of Energy Ma	aterials						
Programme	M.Sc. Material Scien	ce (Speci	ializatio	n in Ener	gy Scie	ence)		
Course Name	Advanced Functiona	I Materia	ls					
Course Credit	3							
Type of Course	CORE							
Course Code	EMM23C88							
Course Summary & Justification	The course provides a fundamental understanding of the physical principles responsible for the properties of important functional materials, with emphasis on the design of material properties emerging and potential applications and sustainability. The advanced chemical and physical aspects of modern materials and the transfer of skills in synthesis, development, analysis and manufacturing of functional materials are the key issues of the course Advanced Functional Materials. The research oriented extension and intensification of knowledge is based on advanced practical training in actual research fields in a modern laboratory environment. This course is designed as an interdisciplinary course that includes fundamental as well as in-depth knowledge of the advanced functional materials. The syllabus has been designed to cover the fundamental understanding of different functional materials with special emphasis on fullerenes, carbon nanotubes and graphene synthesis and related topics thereby							
Semester	2							
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutoril	Practic al	Othe s	Total Learni ng Hours		

		40	40	0	40	120
Pre-requisite	Basics of laws and penergy changes of a	orinciples system.	of ther	modynam	ics,entr	opy and

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Demonstrate an understanding of the classical theories of electrical conduction and energy band/bandgap theory and be able to analyze the conduction property of complex materials	U, I, A	1,2,4
2	Apply the semiconducting mechanism to define intrinsic and extrinsic (p- and n-type) semiconductors, and critically evaluate doping effect and p-n junctions, demonstrate the ability to design common semiconductor devices, and microelectronic techniques.	S, R	2,5,7
3	Critically evaluate the newest development of nanomaterials and nanotechnology, demonstrates the ability to use this knowledge to design new nanostructures for required or special applications.	U, I	3,8
4	Create and design materials for environment cleaning and valuable materials recovery	An	4,9
*Reme (C), SP	mber (R), Understand (U), Apply (A), Analyse (An), kill (S), Interest (I) and Appreciation (Ap)	Evaluate (E), Create

Module	Module Content	Hrs	CO.
No:			No.
1	Introduction: Definition of functional materials, Different kind of functional materials; Use of functionalities of materials in fabricating devices, Causes for observed functionality in a material; Functionality arising due to (i) electronic, (ii) spin, and (iii) ionic degrees of freedom; Exploitation of combined effects in designing new functional materials	10	1

2	Semiconducting Nanostructures: Metal oxide nanostructures: Background, Synthesis, Properties and Applications. Nano chalcogenides: Background, Synthesis, Properties and Applications, Organic Semiconductor Nanostructures: Background, Synthesis, Properties and Applications.	10	2
3	Carbon Nanomaterials: Introduction to Carbon allotropes and Carbon nanomaterials, Fullerenes: Structure of Higher Fullerenes, Growth Mechanisms; Production and Purification: Pyrolysis of Hydrocarbons, Partial Combustion of Hydrocarbons, Arc Discharge Methods, Resistive Heating, Rational Syntheses. Physical Properties, Spectroscopic Properties, Thermodynamic Properties. Chemical Properties: Hydrogenation, Halogenation, Nucleophilic Addition to Fullerenes, Applications.	10	4
4	Carbon nanotubes (CNT): The Structure of Carbon Nanotubes, Single Walled Carbon Nanotubes, Multiwalled Carbon Nanotubes. Electrical, Vibrational, Mechanical Properties of CNTs, optical properties & Raman Spectroscopy of CNTs. Purification and Functionalization of CNTs by Flame, CVD, Laser & Arc-discharge process, Fluidized bed reactor, Applications.	8	3, 4
5	Graphene: Structure of graphene, synthesis of graphene: Modified Hummer's method, electrochemical exfoliation and CVD method, Electronic Properties Band structure of Graphene -Mobility and Density of Carriers - Quantum Hall Effect -Spectroscopic Properties of graphene, Applications.	8	4

REFERENCE

- 1. Solid State Physics by N.W.Ashcroft and N.D. Mermin, Harcourt College Publishers
- 2. The Physics of Semiconductors: An Introduction Including Devices and Nanophysics by Marius Grundmann, Springer Berlin Heidelberg New York
- 3. Electronic Structure: Basic Theory and Practical Methods by R.M.Martin, Cambridge University Press
- 4. Encyclopaedia of Nanotechnology, M.Balakrishna rao and K.Krishna Reddy, Vol I to X Campus books (2006).

- 5. Nano: The Essentials Understanding Nano Scinece and Nanotechnology, T.Pradeep; TataMc.Graw Hill (2008).
- Carbon Nanotubes: Properties and Application, Michael J. O'Connell, CRC Press (2018).
- 7. Nanotubes and Nanowires, CNR Rao and A Govindaraj, RCS Publishing (2005)
- 8. Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, Liming Dai, Elsevier Science (2006).
- 9. Carbon Materials and Nanotechnology, Anke Krueger, Wiley-VCH Verlag GmbH & Co. KGaA (2010).
- 10. Nanostructures and Nanomaterials Synthesis, Properties, and Applications, Cao, G, Imperial College Press (2004).
- 11. Handbook of Nanoscience, Engineering, and Technology, Goddard III W.A., et. al., Taylor & Francis Group (2007).
- 12. Hybrid Nanomaterials: Synthesis, Characterization, and Applications, B.P.S. Chauhan (Ed), Wiley-VCH Verlag GmbH (2011).

	MAHATMA GANDHI UNIVERSITY
ित्तार्थाः विद्यायां अप्रृतमण्डनुत	POWER ELECTONICS AND APPLICATIONS
SchoolName	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	POWER ELECTONICS AND APPLICATIONS
Course Credit	3
Type of Course	CORE
Course Code	EMM23C60
Course	The course focuses on presenting the fundamental concepts on
Summary &	conversion, control and monitoring of electric energy using power
Justification	semiconductor devices. Methods for analyzing power electronic
	converters suitable for AC/DC, DC/DC and DC/AC electrical
	energy conversions are presented. This unit of study aims to

	provide the fundamentals of power electronics. It provides description of the operation principles and control of these blocks. Through analysis and design methodologies, it delivers an understanding of modern enabling technologies associated with energy conversion.						
Semester	2						
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutoril	Practic al	Othe s	Total Learni ng Hours	
		40	40	0	40	120	
Pre-requisite	Basics of laws and pri energy changes of a	nciples of system.	f thermoo	dynamics	entropy,	and	

CO	Expected Course Outcome		PSO
No.		Domains	No.
1	Compare the characteristics of power electronic devices	U, R	1,2
2	Describe the role of Power Electronics as an enabling technology in various applications such as flexible production systems and energy conservation.	U, A, C	2,4,6
3	Learn the basic concepts of operation of dc-ac converters	U, An	3,4
4	Understand, simulate and design single-phase and three-phase thyristor converters	A, S	3,6
5	Recognize the role power electronics play in the improvement of energy usage efficiency and the applications of power electronics in emerging areas.	U, R	3,5
6	Design and Analyze power converter circuits and learn to select suitable power electronic devices by assessing the requirements of application fields.	I, R	4,5

	applications which are becoming extremely important.		0,0			
8	Design various application of power electronics for motor speed control in electric vehicles.	E, Ap.	3,7			
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

Module No:	Module Content	Hrs	CO. No.
1	Power Semiconductor Devices : Introduction, Scope and Application- Construction and characteristics of Thyristors SCR, TRIAC, DIAC, SBS, UJT, MOSFET, IGBT, MCT and GTO, Comparison of Controllable switches.	18	1,2
2	Phase Controlled Converters: Principle of phase control, Full-wave controlled Converters. Single phase full wave converters, Single phase two pulse converters with discontinuous load and its performance, three phase thyristor converters: half wave, full and semi converters. Dual Converters. Effect of source impedance on performance of converter.	15	2,3
3	DC to AC Converters Introduction, Classification, single phase half and full bridge VSI, three phase VSI 120 and 180-degree conduction mode. Performance Parameters of Inverter, Voltage control of single phase and three phase Inverter, Series inverter, Parallel inverter, Current source inverter.	12	3,4,6
4	AC Voltage Controllers:	15	5,7,8

	Introduction, Principal of On-Off control and Phase Control, Single phase Bidirectional Controllers with R and R-L Loads, Three phase full wave controllers Cycloconverters- Single Phase and Three phase cycloconverters.		
5	Application of Power Electronics: UPS, Battery Charging, HVDC, DC, BLDC and PMS Motor Speed control, A.C. Drives-variable frequency drives. DC and AC Power supplies, Electric Vehicle.	10	7,8

Teestation						
Teaching	Classroom Procedure (Mode of transaction)					
and	Contact classes, Tutorials, Seminar, Assignments, Authentic					
Learning	learning, Library work, independent studies, Presentation by					
Approach	individual student.					
Assessment	Mode of Assessment					
Types	C. Continuous Internal Assessment (CIA)					
	 Surprise test 					
	 Internal Test – Objective and descriptive answer type 					
	 Submitting assignments 					
	 Seminar Presentation – select a topic of choice in the 					
	concerned area and present in the seminar					
	D. Semester End examination					

REFERENCES

1. A Handbook of Nanotechnology, U. Kumar, AGROBIOS

- 2. Springer Handbook of Nanotechnology, B. Bhooshan, Springer
- 3. Advances in Nanomaterials, Zishan Husain Khan & M. Husain, Springer22

4. Recent Trends in Nanomaterials: Synthesis and Properties (Advanced Structured Materials), Zishan Husain Khan, Springer

5. Muhammad H. Rashid, "Power Electronics - circuits, devices and applications", Prentice Hall of India, 2nd edition.

6. Power Electronics – Devices, Converters and Applications", by Vedam Subramanyam Revised 2nd edition, New Age Publications.

7. Thyristorised controller by Dubey, Joshi & Doradla, New age Publication. 4. B. K. Bose, 'Modern Power Electronics & AC Drives', Prentice Hall India.

8. P. S. Bimbhra, "Power Electronics", Khanna Publishers, New Delhi.

MAHATMA GANDHI UNIVERSITY

LAB II - Energy conversion and Energy storage

School Name	School of Energy Materials						
Programme	M.Sc. Material Science (Specialization in Energy science)						
Course Name	LAB II - Energy cor	nversion	n and Ei	nergy st	torage		
Type of Course	Core						
Course Code	EMM23C89						
Course Summary & Justification	The lab course will include detail on Energy conversion and Energy storage.						
Semester	3 Credit 3						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Authentic learning						
	Collaborative learning4040-40120						
	Case based learning						
Pre-requisite	Basic synthesis lab skills						
Others- Library, seminar and assignment preparations, test, journal, discussion etc.							

CO No.	Expected Course Outcome	Learning Domains	PSO No.
-----------	-------------------------	---------------------	---------

	Upon completion of this course, students will be able to;				
1	Synthesise a material by a variety of different synthesis routes, having assessed their suitability	U, A	6,8		
2	Critically analyse how and why the nature of the chemical bonding in a material is influenced by the synthetic pathway and how it impacts the resulting material properties	U, A	2		
3	evaluate the suitability of synthesis and characterisation methodologies for a material targeted towards energy storage application	U, A,R	2,7		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

(C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar
	Assignments
	Semester End examination

MAHATMA GANDHI UNIVERSITY

LAB III – Power Electronics and Applications

School Name	School of Energy Materials							
Programme	M.Sc. Material Science (Specialization in Energy science)							
Course Name	LAB III – Power Ele	ectronic	s and A	pplicati	ons			
Type of Course	Core							
Course Code	EMM23C90							
Course Summary & Justification	The lab course will include detail on Power Electronics and Applications.							
Semester	3 Credit 3							
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning							
	Collaborative learning4040-40120							
	Case based learning							
Pre-requisite	Basic synthesis lab skills							
Others- Library, seminar and assignment preparations, test, journal, discussion etc.								

CO No.	Expected Course Outcome	Learning Domains	PSO No.
-----------	-------------------------	---------------------	---------

	Upon completion of this course, students will be able to;			
1	Synthesise a material by a variety of different synthesis routes, having assessed their suitability	U, A	6,8	
2	Critically analyse how and why the nature of the chemical bonding in a material is influenced by the synthetic pathway and how it impacts the resulting material properties	U, A	2	
3	evaluate the suitability of synthesis and characterisation methodologies for a material targeted towards energy storage application	U, A,R	2,7	
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create				

(C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar
	Assignments
	Semester End examination

ELECTIVES

	MAHATMA GANDHI UNIVERSITY					
ENERGY CONVERSION, STORAGE AND TRANSPOR						TATION
SchoolName	School of Energy Ma	terials				
Programme	M.Sc. Material Scienc	e (Specia	lization i	n Energy	science)
Course Name	ENERGY CONVERSI	ON, STO	RAGE A	ND TRAI	NSPOR	TATION
Course Credit	3					
Type of Course	Elective					
Course Code	EMM23E26					
Course Summary &	Energy storage solutions are receiving high marks in the energy sector.					
Justification	Energy storage is a useful tool to support grid electrical supply, transmission and distribution systems.					
	This course covers a variety of topics in Energy Storage such as: Basics of energy storage systems, application of energy storage in electrical engineering, application of energy storage in transportation, energy storage in photovoltaic (PV) systems, energy storage applications in mobile applications, micro-power application of energy storage, hydrogen and thermal storage, lead acid batteries, fuel cell principles, electrochemical storage, and super capacitors.					
Semester	II					
Total Student Learning Time (SLT)	Learning Approach Lectur Tutoril Practic Othe ng e Hours					
	40 40 0 40 120					120
Pre-requisite	General Chemistry and Physics, Introductory Materials Science, Elementary Semiconductor Theory, Thermodynamics of Materials.					

CO No.	Expected Course Outcome	Learning Domains	PSO No.			
1	Understand the basic concept of energy storage devices	U, R	1,2			
2	Students will have the ideas in energy conversion methods.	U, A, C	2,4,6			
3	Understand the background, synthesis, properties and applications of energy storage devices and perform the selection based on techno economic view point	U, An	3,4			
4	Utilization and application of energy storage systems in various sectors and industries like automotive, electronics and energy	A, S	3,6			
5	To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization.	I, R	4,5			
6	Detail practical knowledge in energy storage systems and conversion process of battery electric vehicles	A, S	5,6			
7	To impart awareness on significance of Types and usage of hydrogen fuel cells in the future technological applications.	E, Ap.	3,7			
*Reme (C), SP	Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module No:	Module Content	Hrs	CO. No.
1	PRINCIPLES OF ENERGY CONVERSION Introduction to power system and technologies. Demand variation and forecasting. Grid features. Siting and costing. Renewable energy: solar, geothermal, wind, biomass, ocean, fuel cells, unique features of decentralized systems. Co-generation systems. Environmental issues, sustainability and future scenarios.	18	1,2

2	HOME HEATING COOLING AND TRANSPORTATION Furnace efficiency-heat pumps- air conditioning-integrated HVAC systems minimizing heat loss-insulation, windows, and air leaks-residential lighting transportation-FUEL Economy- hybrid vehicles.	15	2,3
3	ENERGY STORAGE	12	3,4,6
	Introduction-pumped hydroelectric power-bath country pumped hydroelectric facility-compressed air energy storage- implementation of compressed air energy storage-fly wheels- superconducting magnetic energy storage (SMES).		
4	BATTERY ELECTRIC VEHICLES	15	5,7
	BEVs- Introduction-battery types-the cost of electricity-BEV requirements and design-flow batteries-history of BEVs-rechargeable sodium batteries-super capacitors.		
5	HYDROGEN FUELS		6,7
	Introduction-properties of hydrogen-hydrogen production methods – electrolysis-Thermal Decomposition of Water- Chemical Reactions-Storage and Transportation of Hydrogen-Hydrogen Internal Combustion Vehicles Fuel Cells-Fuel Vehicles-Hydrogen Present and Future-Efficiency of Different Transportation Technologies.		

Teaching	Classroom Procedure (Mode of transaction)					
and	Contact classes, Tutorials, Seminar, Assignments, Authentic					
Learning	learning, Library work, independent studies, Presentation by					
Approach	individual student.					
Assessment	Mode of Assessment					
Types	E. Continuous Internal Assessment (CIA)					
	 Surprise test 					
	 Internal Test – Objective and descriptive answer type 					
	 Submitting assignments 					
	 Seminar Presentation – select a topic of choice in the 					
	concerned area and present in the seminar					
	F. Semester End examination					

REFERENCE BOOK

- 1. Jochen Fricke, Walter L. Borst, Essentials of Energy Technology: Sources, Transport, Storage, Conservation 1st Edition, Wiley, (2014)
- 2. Richard a. Dunlap sustainable energy, Cengage Learning; 1st edition (2014)

- 3. Linden D. and Reddy Thomas B., "Handbook of Batteries", 2001, McGraw Hill Publications.
- 4. S. Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer (2006)
- 5. Jochen Fricke, Walter L. Borst, Essentials of Energy Technology: Sources, Transport, Storage, Conservation 1st Edition, Wiley, (2014).
- 6. O'Hayre, S. W. Cha, W. Colella and F. B. Prinz, Fuel Cell Fundamentals, Wiley (2005)
- 7. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition.

LAND HI CONTRACTOR	MAHATMA GANDHI UNIVERSITY
ित्तापा अप्रुतमण्डल	MEMS AND NANOFABRICATION
SchoolName	School of Energy Materials
Programme	MSc. Material Science (Specialization in Energy Science)
Course Name	MEMS AND NANOFABRICATION
Course Credit	3
Type of Course	Elective
Course Code	EMM23E52
Course Summary & Justification	This course is based on the manufacturing and characterization fundamentals of nano-scale materials for nano- and micro-electro- mechanical systems (N/MEMS). The students-who want to specialize on N/MEMS and CMOS devices and smart hybrid materials systems for nano and micro-electronics and nano-composites based structures-are targeted. There is a big demand from high-tech precision industry (medical and electronic) for the engineers having knowledge of fabrication and characterization of nano- and micro-systems.
Semester	11

Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutoria I	Practica I	Othe s	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	40	40	0	40	120
Pre-requisite	Basics concepts in Microsystems and Microelectronics.					

CO No.	Expected Course Outcome	Lear ning Dom ains	PSO No.
1	Understand the basic concept of nanoscience and nanotechnology.	U, R	1,2
2	Have a concept on the scope and recent development of the science and technology of micro- and nano-systems	U, A, C	2,4,6
3	Gain the physical knowledge underlying the operation principles and design of microand nano-systems.	U, An	3,4
4	to understand the operation of micro devices, micro systems and their applications	A, S	3,6
5	Gain a knowledge of basic approaches for various sensor design	U, R	3,5
6	Gain the technical knowledge required for computer-aided design, fabrication, analysis and characterization of nano-structured materials, micro- and nano-scale devices.	I, R	4,5
7	Select one or more suitable MEMS/NEMS integration and packaging approaches for a given application.	A, S	5,6
8	Exploring the fundamental working principle of bio- molecule sensing/sensors, and applying this knowledge to design solutions to probe biomedical and biology systems.	E, Ap.	3,7

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Module	Module Content	Hrs	CO.
No:			No.
1	Overview and working principles of MEMS MEMS and Microsystems – Typical MEMS and Microsystems products – Microsystems and Microelectronics – Miniaturization – Applications of Microsystems – Microsensors, Micro actuators, Microgrippers, Micromotors, Microvalves, Micropumps and Micro accelerometers.	10	1,2
2	Fabrication & microsystem designIons and Ionization – Doping – Scaling Laws forElectrical design – Substrate and wafers –Silicon as a substrate – Silicon compounds –Piezoresistors – Piezocrystals – GalliumArsenide, Quartz -Polymers in MEMS –PMMA.Micro System Fabrication Processes –Photolithography, Ion Implantation, Diffusion,Oxidation, Chemical Vapour Deposition,Physical Vapour Deposition – Sputtering,Deposition by Epitaxy, Etching.	15	2,3
3	Overview of MicromanufacturingBulkMicromanufacturing,SurfaceMicromachiningandLIGAProcess.MicrosystemDesign-DesignConsiderations–Use of CAD tool inMicrosystemDesign.Design.	10	3,4,6
4	Microsystem Packaging General considerations in Packaging Design- Levels of Microsystem Packaging. Bonding Techniques for MEMS: Surface Bonding, Anodic bonding Wire Bonding. Overview of MEMS areas: RF MEMS, Bio- MEMS, MOEMS, NEMS.	10	5,7,8
5	Introduction to Nanofabrication Introduction to methods of fabrication of nano layers, different approaches, Fabrication of nano	15	6

particle, Precipitation of quantum dots. Electron	
beam evaporation Sputtering, Cathodic Arc	
Deposition, Atomic Layer Deposition, Pulsed	
Laser Deposition, Molecular Beam Epitaxy,	
Lithography and their types, mechanical milling,	
Chemical Methods; Sol-Gel technique, self-	
assembly, colloidal method, hydro-thermal	
method, coprecipitation method, solid state	
synthesis, microwave method, micro-emulsion	
method.	

Teaching	Classroom Procedure (Mode of transaction)						
and	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library						
Learning	work, independent studies, Presentation by individual student.						
Approach							
Assessment	Mode of Assessment						
Types	G. Continuous Internal Assessment (CIA)						
	 Surprise test 						
	 Internal Test – Objective and descriptive answer type 						
	 Submitting assignments 						
	 Seminar Presentation – select a topic of choice in the concerned 						
	area and present in the seminar						
	H. Semester End examination						

REFERENCE BOOKS:

- 1. "MEMS & Micro Systems Design and Manufacture" Tai-Ran-Hsu, TMH, 2002 Edition.
- 2. Julian W Gardner, Microsensors: Principles and Applications- John Wiley & Sons, 1994
- Anter Madou, Fundamentals of Micro Fabrication, CRC Press, New York, 1997
- 4. 3. Stephen D Senturia, Microsystem design, Springer (India) ,2006
- 5. 4. Thomas B Jones, Electromechanics and MEMS, Cambridge University Press 2001
- 6. Chattopadhyay, Banerjee, Introduction to Nanoscience & Technology, PHI, 2012

7. George W. Hanson, Fundamentals of Nanoelectronics, Pearson Education, 2009.

	MAHATMA GANDHI UNIVERSITY
िगात्र भग्न विद्यया अमृतमइन्द	SOLAR, PHOTOVOLTAIC TECHNOLOGY
School Name	School of Energy Materials (SEM)
Programme	M. Sc. Material Science (Specialization in Energy Science)
Course Name	Solar, Photovoltaic Technology
Course Credit	2
Type of Course	ELECTIVE
Course Code	EMM23E54
Course Summary & Justification	This course aims to develop researchers who can provide fundamental inputs required to meet the challenges of a sustainable energy future.
	This course is designed at providing students with concepts of photovoltaic (PV) systems Overview of PV usage in the world, basic structure and characteristics of solar cells, study about Solar Power Plant, its Components and Working and Types of Solar Power plant. The course also provide knowledge about solar power management
	This course offers an advanced knowledge within the field of photovoltaic system technology. By completing this course students can get a knowledge about the solar resource and how photovoltaic energy conversion is used to produce electric power. This course also provides fundamental starting point for the design and fabrication of different solar cell and module technologies, the various photovoltaic system components, how to design a photovoltaic cell etc.
Semester	2

Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutoria I	Practic al	Other s	Total Learning Hours
		30	30		30	90
Pre-requisite	Basics of Solar measurements, S	Energy:	Energy a trum, Ele	nd develo ctromagn	opment, etic spec	Units and ctrum.

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understanding the solar cell theory to improve and optimize its performance of solar cell device.	U, An	1,2
2	Identify the potential of energy harvesting systems.	U, I	2,4
3	To learn about fabrication of different types of solar cells.	U, C	2,3,5
4	Gain knowledge about photovoltaic technical parameters and emerging technologies.	A, S	3,6
5	Understand the components of solar powerplant and its working.	U, R	4,7
6	Deep understand in solar power management.	E, Ap.	7

Module	Module Content	Hrs	CO.
No:			No.
1	INTRODUCTION TO PHOTOVOLTAIC (PV) SYSTEMS: Historical development of PV systems, Overview of PV usage in the world, Solar energy potential for PV, irradiance, solar radiation and spectrum of sun, geometric and	10	1,2

	atmospheric effects on sunlight, Photovoltaic effect, conversion of solar energy into electrical energy, behaviour of solar cells		
2	SILICON WAFER BASED SOLAR CELL TECHNOLOGY Photovoltaic Devices & Array and Modules, Technical Parameters: Solar cells, basic structure and characteristics: Single-crystalline, multicrystalline, Processes Used in Solar Cell Technologies-High Efficiency. Silicon Solar Cells- Passivated Emitter Solar Cells (PESC)-buried contact solar cells	15	1,3
3	THIN FILM SOLAR CELL TECHNOLOGIES Thin film deposition techniques-common features of thin film technologies Thin film silicon solar cells. Cadmium telluride solar cell technology-Perovskite solar cell technology- Emerging new technologies. silicon solar cell technologies.	10	4,5
4	EMERGING SOLAR CELL TECHNOLOGIES Need of emerging cell technologies-organic solar cells-dye sensitized solar cell (DSC) –GaAs solar cells- Thermo photovoltaic (TPV)- Crystalline Silicon Multifunction Solar Cells-Quantum Well Solar Cells-Hot Carrier Solar Cells	15	6
5	BATTERIES AND CONVERTERS Definition-types of batteries-parameters of batteries- batteries for photovoltaic systems -liquid vented and sealed- Types of Solar Power Plant: Off grid, Grid Connected, Hybrid, Interfacing PV modules to loads, direct connection of loads to PV modules, connection of PV modules to a battery and load together, DC-DC Converters, DC to AC converters (inverters)- PWM charge controller-maximum power point tracking (MPPT)	10	5,6

Teaching	Classroom Procedure (Mode of transaction)					
and	Contact classes, Tutorials, Seminar, Assignments, Authentic					
Learning	learning, Library work, independent studies, Presentation by					
Approach	individual student					
Assessment	Mode of Assessment					
Types	E. Continuous Internal Assessment (CIA)					
	 Surprise test 					
	 Internal Test – Objective and descriptive answer type 					
	 Submitting assignments 					
	 Seminar Presentation – select a topic of choice in the 					
	concerned area and present in the seminar					
	F. Semester End examination					

References

1. Chetan Singh Solanki, Solar Photovoltaic Technology And Systems

PHI Learning Private limited (2013)

- 3. Richard A.Dunlap, Sustainable energy, Cengage (2018)
- 4. Photovoltaics: Designs, Systems and Applications, Michael Stock, Larsen and Keller Education
- 5. Photovoltaics: Engineering and Technology for Solar Power, Catherine Waltz, Syrawood Publishing House

SAN DAILON	MAHATMA GANDHI UNIVERSITY
मिलवासा असूनमाउन्हर	Nuclear Energy and Technology
School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Nuclear Energy and Technology
Type of Course	Elective
Credit Value	2
Course Code	EMM23E29

Course Summary & Justification	The objective of this class is to provide students with an overview of the fundamental technical and societal aspects of nuclear energy. Emphasis is on nuclear fission as an energy source, with a study of the basic physics of the nuclear fission process followed by detailed discussions of issues related to the control, radioactivity management, thermal energy management, fuel production, and spent fuel management. A discussion of the various reactor types in use around the world will include analysis of safety and nuclear proliferation issues surrounding the various technologies. Case studies of some reactor accidents and other nuclear-related incidents will be included					
Semester	II					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	30	30	0	30	90
Pre- requisite	Basic knowledge on atomic and nuclear forces.					
Others- Library, field work, seminar and assignment preparations, test, journal, discussion etc.						

СО	Expected Course Outcome	Learning	PSO		
No.	Upon completion of this course, students will be able to;	Domains	No.		
1	Understanding the different types of nuclear energy.	U	2		
2	Understand the impact of radiation damages.	U,An	2,6		
3	Understand basic theoretical concepts of nuclear physics, reactor physics, and energy removal	U, S	3		
4	Describe radiation damage mechanisms in materials and biological tissue, estimate radiation dose, understand radiation shielding	An,A	4,5		
5	understand the concepts of chain reaction, neutron balance, criticality, reactivity, and reactivity control	E, C	6,7		
6	understand the fundamental aspects of used fuel reprocessing and disposal	U	2,3		
7	Illustrate different nuclear fuels.	A,An	2,6		
8	General ideas about future nuclear reactors.	U	2,6		
*Ren (C), \$	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module No:	Module Content	Hrs	CO.No.
Module 1	Types of Nuclear Energy: Nuclear Fission Energy,	10	1,2,3
	Nuclear Fusion Energy, Radioisotopic Energy;	Hrs.	
	Neutron Classification, Neutron Sources, Interactions		
	of Neutrons with Matter: Fission Chain Reaction,		
	Neutron Flux and Fluence, Neutron Cross Section:		
	Reactor Flux Spectrum, Nuclear heat energy, Types		
	of Reactors: A Simple Reactor Design, Generation-		
	I,II,III and IV Reactors, Boiling Water Reactor (BWR),		
	Pressurized Water Reactor (PWR), CANDU Reactor,		
	RMBK Reactor, Fast Breeder Test Reactor, Fusion		
	Reactor, Materials Selection Criteria, Reactor		
	Components: Structural/Fuel Cladding Materials,		
	Moderators and Reflectors, Control Materials,		
	Coolants, Shielding Materials, Fusion Reactors.		

Module 2	Radiation Damage, Radiation Effects on non-fuel reactor Materials: Microstructural Changes: Cluster Formation, Extended Defects, Nucleation and Growth of Dislocation Loops, Void/Bubble Formation and Consequent Effects, Radiation-Induced Segregation, Radiation-Induced Precipitation or Dissolution; Mechanical Properties: Radiation Hardening, Saturation Radiation Hardening, Radiation Anneal Hardening (RAH), Channeling: Plastic Instability, Radiation Embrittlement, Effect of Composition and Fluence, Effect of Irradiation Temperature, Effect of Thermal Annealing, Helium Embrittlement, Irradiation Creep, Radiation Effect on Fatigue Properties; Radiation Effects on Physical Properties: Density, Elastic Constants, Thermal Conductivity, Thermal Expansion Coefficient; Radiation Effects on Corrosion Properties: Metal/Alloy, Protective Layer, Corrodent, Irradiation-Assisted Stress Corrosion Cracking (IASCC)	10 Hrs.	2,4,5
Module 2	and Thorium, and their fabrication structure, physical, mechanical and corrosion properties, Ceramic Fuels: Ceramic Uranium Fuels, Uranium Dioxide, Uranium Carbide, Uranium Nitride, Plutonium-Bearing Ceramic Fuels, Thorium-Bearing Ceramic Fuels.	Hrs.	0,0
<u>Module 4</u>	Future Nuclear Reactors: General Considerations for Future Reactors (The End of the First Era of Nuclear Power, Important Attributes of Future Reactors, Reactor Size, U.S. Licensing Procedures); Survey of Future Reactors (Classification of Reactors by Generation, U.S. DOE Near-Term Deployment Roadmap, Illustrative Compilations of Reactor Designs); Individual Light Water Reactors (Evolutionary Reactors Licensed by the U.S. NRC, Innovative Light Water Reactors); High-Temperature, Gas-Cooled Reactors (HTGR Options, Historical Background of Graphite-ModeratedReactors, General Features of Present HTGR Designs, HTGR Configurations); Liquid-Metal Reactors (Recent United States Programs, Safety Features of LMRs); The Generation IV Program (Overview of the Program, Systems Emphasized in the United States); Radical Nuclear Alternatives to Present Reactors (Fusion, Accelerator-Driven Fission).	10 Hrs.	4,5,8

Teaching	Classroom Procedure (Mode of transaction)			
and	Authentic learning, case-based learning, collaborative learning,			
Learning	seminar, group activities.			
Approach				
Assessment	Mode of Assessment			
Types	Continuous Internal Assessment (CIA)			
	Seminar Presentation – a theme is to be discussed and identified			
	to prepare a paper and present in the seminar			
	Assignments			
	Semester End examination			

References

- Lamarsh, J.R. and Baratta, A.J., 2001. Introduction to nuclear engineering (Vol. 3). Upper Saddle River, NJ: Prentice hall.
- 2. Murty, K.L. and Charit, I., 2013. An introduction to nuclear materials: fundamentals and applications. John Wiley & Sons.
- 3. Murray, R.L. and Holbert, K.E., 2008. An Introduction to the Concepts, Systems, and Applications of Nuclear Processes. Nuclear Energy.
- 4. David Bodansky, Nuclear Energy: Principles, Practices, and Prospects, Springer 2004.

	MAHATMA GANDHI UNIVERSITY
रिताया अप्रुतमञ्चल	ENERGY FROM WIND, GEOTHERMAL AND WATER
School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Energy from Wind, Geothermal and Water
Type of Course	Elective
Credit Value	2
Course Code	EMM23E30

Course Summary & Justification	On completion of the course, the student should be able to: discuss the principles behind energy conversion in solar cells and solar fuel systems. discuss different methods for solar fuel production. Explain the conditions for photobiological fuel production, and discuss strategies for enhancing the photosynthetic yield. explain the function of different kinds of solar cells and their mechanisms for charge separation.					
Semester	II					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
		40	40	0	40	120
Pre- requisite	Basic knowledge of Renewable energy resources.					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understanding the principles of extraction of energy from wind, geothermal and water	A, S, U	2,3
2	Illustrate bio, hydro, hydrogen and ocean power generation systems	S	3,4
3	Model hydro power extraction from oceans	An	5
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Module	Module Content	Hrs	CO.
No:			No.
Module 1	Introduction (History of wind energy, Current status	10	1, 6
	and future prospects). Basics of Wind Energy	Hrs.	
	Conversion:Power available in the wind spectra, Wind		
	turbine power and torque, Classification of wind		
	turbines,		
	(Horizontal axis wind turbines, Vertical axis wind		
	turbines, Darrieus rotor, Savonius rotor, Musgrove		
	rotor), Characteristics of wind rotors, Aerodynamics of		
	wind turbines(Airfoil, Aerodynamic theories, Axial		
	momentum theory, Blade element theory, Strip		
	theory), Rotor design, Rotor performance. Analysis of		
	wind regimes: The wind (Local effects, Wind shear,		
	Turbulence, Acceleration effect, Time variation),		
	Measurement of wind (Ecological indicators,		
	Anemometers, Cup anemometer, Propeller		
	anemometer, Pressure plate anemometer, Pressure		
	tube anemometers, Sonic anemometer, Wind		
	direction), Analysis of wind data (Average wind speed,		
	Distribution of wind velocity, Statistical models for wind		
	data analysis; Weibull distribution, Rayleigh		
	distribution), Energy estimation of wind regimes		
	(Weibull based approach, Rayleigh based approach).		
Module 2	Wind energy conversion systems: Wind electric	13	2, 6
	generators (Tower, Rotor, Gear box, Power regulation,	Hrs.	
	Safety brakes, Generator; Induction generator,		
	Synchronous generator. Fixed and variable speed		
	operations, Grid integration), Wind farms, Offshore		
	wind farms, Wind pumps (Wind powered piston		
	pumps, Limitations of wind driven piston pumps; The		

hysteresis effect, Mismatch between the rotor and	
pump characteristics, Dynamic loading of the pump's	
lift rod, Double acting pump, Wind driven roto-dynamic	
pumps, Wind electric pumps) Performance of wind	
energy conversion systems: Power curve of the wind	
turbine, Energy generated by the wind turbine (Weibull	
based approach, Rayleigh based approach), Capacity	
factor, Matching the turbine with wind regime,	
Performance of wind powered pumping systems	
(Wind driven piston pumps, Wind driven roto-dynamic	
pumps, Wind electric pumping systems).	

Module 3	Wind energy and Environment: Environmental	12	5,6
	benefits of wind energy, Life cycle analysis (Net	Hrs.	
	energy analysis, Life cycle emission), Environmental		
	problems of wind energy (Avian issues, Noise		
	emission, Visual impact)		
	Economics of wind energy: Factors influencing the		
	wind energy economics (Site specific factors, Machine		
	parameters, Energy market, Incentives and		
	exemptions, The 'present worth' approach, Cost of		
	wind energy; Initial investment, Operation and		
	maintenance costs, Present		
	value of annual costs), Benefits of wind energy,		
	Yardsticks of economic merit (Net present value,		
	Benefit cost ratio, Pay back period, Internal rate of		
	return), Tax deduction due to investment depreciation		
Module 4	Geothermal Energy: Introduction (Geothermal	15	6, 7,
	Resources), Geothermal Power Plants (Dry Steam	Hrs.	
	Units, Single-Flashing Units, Dual Flashing Units,		
	Several Flashing Processes: A Useful Theoretical,		
	Binary Units, Hybrid Geothermal-Fossil Power Units),		
	Effects of Impurities in the Geothermal Fluid, Cooling		
	Systems, Geothermal District Heating: An Example of		
	Exergy Savings		
	and Environmental Benefit, Environmental Effects.		
Module 5	Power from the Water: Hydroelectric Power (Global	9	2,4,5
----------	---	------	-------
	Hydroelectric Energy Production, Planned	Hrs.	
	Hydroelectric Installations and Future Expansion,		
	Environmental Impacts and Safety Concerns), Tidal		
	Power (Systems for Tidal Power Utilization,		
	Environmental Effects of Tidal Systems, Ocean		
	Currents), Wave Power (Wave Mechanics and Wave		
	Power, Systems for Wave Power Utilization,		
	Environmental Effects of Wave Power and Other		
	Considerations), Ocean Thermal Energy Conversion		
	(OTEC) (Two Systems for OTEC, Environmental		
	Effects of OTEC and Other Considerations), Types of		
	Water Power Turbines, Concluding Remarks on Water		
	Power.		

Teaching	Classroom Procedure (Mode of transaction)				
and	Contact classes, Tutorials, Seminar, Assignments, Authentic				
Learning	learning, Library work, independent studies, Presentation by				
Approach	individual student				
Assessment	Mode of Assessment				
Types	Continuous Internal Assessment (CIA)				
	Surprise test				
	Internal Test – Objective and descriptive answer type				
	Submitting assignments				
	Seminar Presentation – select a topic of choice in the				
	concerned area and present in the seminar				
	Semester End examination				

REFERENCES

1. Wind Energy: Fundamentals, Resource Analysis and Economics, Sathyajith Mathew,

Springer, 2006.

2. Renewable Energy Sources, Efstathios E. (Stathis) Michaelides, Springer, 2012.

Semester III

School Name	School of Energy Materials					
Programme	M.Sc. Material Scie	nce (Sp	ecializa	tion in	Energy	Science)
Course Name	Advanced Comput	ation in	Materia	Is Scier	nce	
Type of Course	Core					
Course Code	EMM23C35					
Course Summary & Justification	The basic microscopic constituents of materials being atoms and inter atomic interactions being responsible the macroscopic behaviour and properties of a material, performing computer simulations in materials across several characteristic length and time scales has obvious appeal as a valid tool aiding technological innovation. This basic course is framed so as to benefit science students who aim at material discoveries and technologists who seek optimised materials for their application of choice. The course will bring out the various facets of computational materials science such as acting as the link between analytic theory and experiment, a tool to scrutinize theories, and as an exploratory research tool for predicting experiments in a laboratory which are difficult to realise physically. The topics are chosen and hierarchically arranged so as to lay strong foundations of computational science in students of					
Semester	3		Credit		3	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based	40	40	-	40	120

	learning					
Pre-requisite	quisite Basic knowledge in Numerical methods and algorithms.					
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	To introduce students to the fundamental aspects of computational science and its increasing role in the development and optimization of materials.	U, A	6,8
2	Provide a combination of theory and laboratory activities for establishing the potential of computational tools in novel materials' design.	U, A	2
3	To help students become aware of the various tools available for materials discovery and optimization.	U, A,I	2,7
4	Students will get introduced to the new interdisciplinary field of computational materials science and engineering	An, E	2,7
5	Students gain an understanding of the theory behind computations and various tools relevant to the design of future materials.	U, I	1,3,4
*Reme (C), SI	ember (R), Understand (U), Apply (A), Analyse (An) kill (S), Interest (I) and Appreciation (Ap)), Evaluate (E), Create

Module	Module Content	Hrs	CO.
No:			No.

1	Introduction to computational modeling and simulation for Materials Science, First principle methods: the beginnings of Quantum mechanics, Schrodinger wave equation, time-independent wave equation, Molecular mechanics- Force Field Methods, Postulates of quantum mechanics, Energy Hamiltonian, early first principles calculation, Born-Oppenheimer approximation, Hartree method (one electron), HartreeFock molecular orbital theory, Self-consistent-field (SCF) procedure;	15	1
2	Density functional theory (DFT): electron density in DFT, Hohenberg-Kohn theorems, Kohn-Sham approach, exchange correlation functionals, solving Kohn-Sham equations, DFT extensions and limitations. DFT exercises using software (VASP/Gaussian).	20	2
3	Molecular dynamics (MD): Atomic model in MD, Molecular mechanics, potentials, solutions for newton's equation of motion, running MD: initialization, pre-set ups, periodic boundary condition, positions and velocity, time steps, ensembles, integration equilibration, minimisation in static MD run – steepest descent method, conjugate gradients method, run analysis. MD analysis exercises using software (LAMMPS/ XMD)	10	3
4	Monte Carlo (MC) methods: Basis of MC methods, stochastic processes, Markov's process, ergodicity; Algorithms for MC simulations, random numbers, sampling techniques. Applications of MC methods: System of classical particles, percolation, polymer systems, nucleation, crystal growth, fractal systems. Limitations of MC methods, introduction to quantum MC methods.	15	4
5	Materials genomics: High through-put combinatorial algorithms for materials design.	8	2,4,5

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	Seminar Presentation – a theme is to be discussed and identified
	to prepare a paper and present in the seminar
	Assignments
	Semester End examination

References

1.Richard LeSar, Introduction to Computational Materials Science: Fundamentals to Applications, Cambridge University Press, 2013.

2. June Gunn Lee, Computational Materials Science: An Introduction, CRC Press, 2012.

3. Kaoru Ohno, KeivanEsfarjani, Yoshiyuki Kawazoe, Computational Materials Science: From Ab Initio to Monte Carlo Methods, 2nd Ed., Springer, 2018.

4. I.N. Levine, Quantum Chemistry, 6th ed., Prentice Hall, 2009.

5. J.A. Dantzig, C.L. Tucker, Modeling in Materials Processing, 1sted., Cambridge University Press, 2001

6. Guillermo Bozzolo, Ronald D. Noebe, Phillip B. Abel (Editors), Applied Computational Materials Modeling: Theory, Simulation and Experiment, Springer, 2007.

7. A.R. Leach, Molecular modeling: Principles and Applications, 2nd ed., Pearson-Prentice Hall, 2001.

TEANDHI UN	MAHATMA GANDHI UNIVERSITY
मिलाया असूतमप्रनुत	Processing and designing of materials
School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	Processing and designing of materials
Type of Course	Core
Credit Value	3
Course Code	EMM23C91

Course	This course focuse	s on the v	arious pro	cessing te	chniques	of metals,
Summary & Justification	polymers and ceramics. The process parameters involved during					
	processing and the	eir influen	ce on the	final shap	e of the	product is
	discussed. Design	of tools a	nd other a	accessories	s for mar	nufacturing
	a healthy product is	s also incl	uded.			
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Independent learning	40	40	0	40	120
Pre- requisite	Basic knowledge on the manufacturing techniques of various materials					
Others- Library, field work, seminar and assignment preparations, test, journal, discussion etc.						

CO	Expected Course Outcome	Learning	PSO			
No.	Upon completion of this course, students will be able to;	Domains	No.			
1	To impart knowledge about processing of polymers, ceramics and metals.	U,R	2,6,7			
2	Understanding the rheology of polymer materials.	U	2			
3	Identify and understand the various synthesis methods of ceramics.	U, An	2,6			
4	Impart idea about metallic processing.	A, An	2,6			
5	Will understand the basic concepts of material selection and design aspects.	U	2,6			
*Ren (C), :	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Module Content	Hrs	CO.
No:			No.

Module 1	Introduction: Materials processing science with	8	1
	special emphasis on processing of polymers, ceramics	Hrs.	
	and metals.		
Module 2	Polymer processing: Rheology of polymeric	15	2
	materials, Compounding of plastics, processing	Hrs.	
	techniques: Compression, Transfer, injection, blow		
	molding, Extrusion, Calendaring, Thermoforming,		
	Rotational molding, Compounding and processing of		
	rubber (both latex and dry rubber) with different		
	formulations: Casting, rubber extrusion, Dip coating		
	(gloves, balloons etc.), fibre spinning and		
	manufacturing processes.		

Module 3	Ceramic processing: Processing of traditional	12	3
	ceramics- spray granulation, Pressing, CIP, HIP,	Hrs.	
	Slurry processing, Slip casting, Pressure casting, Tape		
	casting, Gel casting, Injection molding, Extrusion;		
	Rapid prototyping through Additive manufacturing,		
	Electrophoretic deposition, Production of ceramic		
	fibres, Electro-spinning; Drying, Binder burnout, Green		
	machining, Sintering; Sol-gel processing, Thermal and		
	plasma spraying, Thick and thin film coatings- PVD		
	and CVD techniques; Vapor infiltration techniques.		
Module 4	Metallic processing: Casting process- major casting	15	4
	techniques, Solidification and volume shrinkage,	Hrs.	
	Casting design and defects, Fundamentals of		
	deformation processing, Deformation work, Hot and		
	cold working, Few forming processes and defects;		
	Metal joining process- Concepts of Fusion and solid		
	state welding processes, Brazing and soldering,		
	Welding defects		
Module 5	Design aspects: General principles of materials	10	5
	selection and design based on requirements of	Hrs.	
	function, Property, Processability and cost;		
	Quantitative methods of materials selection, Materials		
	performance index; Design of engineering structures		
	from the atomic- and nano-scales to macroscopic		
	levels; Case studies- modern metallic, ceramic,		
	polymeric and biomaterials devices and components		

Teaching	Classroom Procedure (Mode of transaction)						
and Learning	Instruction:, Active co-operative learning, Seminar, Group						
Approach	Assignments, Authentic learning, Library work and Group						
	discussion, Presentation by individual student/ Group representative						
Assessment	Mode of Assessment						
Types	1. Continuous Internal Assessment (CIA) Internal Test						
	Assignment – Every student needs to write an assignment on a given topic based on the available published literature						
	2. Seminar Presentation – A topic needs to be presented and discussed with the class						

Reference Books:

- 1. P. Boch, J-C. Nièpce, Ceramic Materials: Processes, Properties, and Applications, Wiley-ISTE, 2007.
- 2. J-H. He, *Electrospun Nanofibres and Their Applications*, Smithers Rapra Technology, 2008.
- 3. Z. Tadmor, C.G. Gogos, *Principles of Polymer Processing*, 2nd ed., Wiley International, 2006.
- 4. T.A.Osswald, *Polymer Processing Fundamentals*, Hanser Publications, 1998.
- 5. M.N. Rahaman, Ceramic Processing and Sintering, 2nd ed.,, CRC press
- 6. F.C. Campbell, *Elements of Metallurgy and Engineering Alloys*, ASM International, 2008.
- 7. J. Beddoes, M.J. Bibby, *Principles of Metal Manufacturing Processes*, Elsevier, 2003.
- 8. G.E. Dieter, *Mechanical Metallurgy*, McGraw-Hill, 3rd ed., 1986.
- 9. E. Degarmo, J.T. Black and R.A. Kohser, *Materials and Processes in Manufacturing*, 9th ed., Wiley, 2002.
- 10. S. Kalpakjian, S.R. Schmid, *Manufacturing Engineering and Technology*, 6th ed., Pearson, 2009.

MAHATMA GANDHI UNIVERSITY

Advanced Solid State and Electrochemistry

School Name	School of Energy Materials							
Programme	M.Sc. Material Scier	M.Sc. Material Science (Specialization in Energy science)						
Course Name	Advanced Solid Sta	ate and	Electro	chemist	try			
Type of Course	Core							
Course Code	EMM23C34							
Course Summary & Justification	Solid-state electrochemical devices play a crucial role in the society. The contribution of the devices ranges from semiconductor to energy devices. The core of the lecture lies in the understandings of the response of electrons and ions under an electric field							
Semester	3 Credit 3							
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
	Authentic learning Collaborative learning Case based learning	40	40	-	40 120			
Pre-requisite	Fundamental knowledge in Solid state and electrochemical reactions.							
Others- Library, seminar and assignment preparations, test, journal, discussion etc.								

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Understand solids from both chemistry and physics point of view.	U, A	6,8

2	Explain the working principles and the prospects of semiconductor and energy devices.	U, A	2
3	To know the physical properties of the solid and liquid state and electrochemical processes at the solid/liquid interface.	U, A	2,7
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create			

(C), Skill (S), Interest (I) and Appreciation (Ap)

Module No:	Module Content	Hrs	CO.No.
1	Activity and Activity coefficient of electrolytes, lonic strength, Debye Huckel theory of strong electrolytes, Debye Huckel limiting law equation, Application of Debye Huckel theory to conductance bahaviour, Relaxation and electrophoretic effect, Debye-Huckel- Onsager equation and its derivation- Application of Debye Huckel equation for the determination of thermodynamic equilibrium constants, Calculation of effect of ionic strength on the reaction rates in solutions. Debye Falkenhagen effect. Wein effect.	15	1
2	Equilibrium Electrochemistry-EMF Phenomena, Cell Potential and its measurement, reference electrodes, Electrochemical series, Calculation of thermodynamic properties and activities, Cells without liquid junction potential, Liquid junction potential and its determination, Determination of solubility. Conductometric, Potentiometric and pH titrations, Redox indicators and redox titrations.	20	2
3	Dynamic Electrochemistry- Electrical double layer, Various models of electrical double layer, Electrode polarization. Electrolytic polarization, Dissolution and deposition potential, Overpotential and its theories, Butler Volmer equation, Tafel equation. Tafel plot and its significance, Overvoltage- hydrogen overvoltage and oxygen overvoltage, Theories of hydrogen overvoltage.	10	3

4	Corrosion and methods for prevention. Porbaux diagram and Evans diagrams. Storage cells- Lithium ion battery. Fuel Cell. Theory and working of fuel cell. H2- O2 fuel cell, Methanol fuel cell, Solid oxidefuel cells, alkaline and polymer electrolyte fuel cells. Introduction to	15	2,3
5	Review of Crystal symmetry and symmetry elements and symmetry operations, crystal systems, Bravais lattices and crystal classes, Crystallographic point groups - Schönflies & Hermann– Mauguin notations, Stereographic projections of the 27 axial point groups, translational symmetry elements & symmetry operations - screw axes and glide planes, Introduction to space groups. Bragg's law and applications, lattice planes and miller indices, <i>d</i> -spacing formulae, crystal densities and unit cell contents, Imperfections in solids - point, line and plane defects, non-stoichiometry.	10	3

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Authentic learning, case-based learning, collaborative learning, seminar, group activities.
Assessment Types	Mode of Assessment Continuous Internal Assessment (CIA) Seminar Presentation – a theme is to be discussed and identified to prepare a paper and present in the seminar Assignments Semester End examination

References

- 1. J. Bockris and A.K.N. Reddy, Modern Electrochemistry, 2nd Edn., Wiley, New York, 1998
- 2.2. R. Crow, Principles and Applications of Electrochemistry, Paper back edn, 4th edn, 1994.
- 3. S.Glasstone, An Introduction to Electrochemistry, Paperback edn., 2007
- 4. L.V.Azaroff, Introduction to Solids, Mc Graw Hill, 1960.

5. A. R. West, Solid State Chemistry, Wiley Student (Indian) Ed., (2014)

6. A.K. Galwey, Chemistry of Solids, Chapman and Hall, London, 1967.

7. Lesley Smart and Elaine Moore, Solid State Chemistry, Chapman and Hall, 1995.

8. H. V. Keer, Principles of the Solid State Wiley Eastern Ltd, New Delhi, 1993.
9. C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry. 2nd edn,Cambridge Uty Press, 1997.

of Materials and Applications

School Name	School of Energy Materials
Programme	M.Sc. Material Science (Specialization in Energy Science)
Course Name	LAB IV- Fabrication of Materials and Applications
Type of Course	Core
Course Code	EMM23C92
Course	The lab course will include detail on solid state synthesis, solution-
Summary &	based synthesis (co-precipitation, solvothermal, sol-gel, microwave
Justification	synthesis), synthesis from the melt, combustion synthesis, gas
	phase synthesis for thin films (PVD, CVD, sputtering), and polymer
	synthesis.

	It will also cover sca	It will also cover scattering techniques (e.g. XRD, PDF),					
	spectroscopic techniques (e.g. IR, Raman, XPS, XAS, UV-vis),						
	imaging (e.g. SEM, AFM, TEM), methods for studying materials						
	properties such as electrochemical, mechanical and magnetic						
	characterisation.						
Somostor	1		Cradit		2		
Semester			Credit		3		
Total Student							
Learning Time	Learning Approach					Total	
(SLT)	Loaning Approach			-		Learning	
		ture	orial	ctica	ers	Hours	
		Lec	Tuto	Pra	Oth	Tiours	
	Authentic learning						
	Collaborative						
	learning	40	40	_	40	120	
	Case based						
	learning						
Pre-requisite	Basic synthesis lab	skills	1	1	L	1	
0//							
Others- Library, seminar and assignment preparations, test, journal, discussion etc.							

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Synthesise a material by a variety of different synthesis routes, having assessed their suitability	U, A	6,8
	Critically analyse how and why the nature of the chemical bonding in a material is influenced by the		2

2	synthet	ic pathway and how it impacts the resulting	U, A			
	materia	Il properties				
	evaluat	e the suitability of synthesis and				
3	charact	terisation methodologies for a material	U, A	2,7		
	targete	d towards a particular application				
*Reme	ember (F	R), Understand (U), Apply (A), Analyse (An	, Evaluate (l	E), Create		
(C), SI	kill (S), I	nterest (I) and Appreciation (Ap)				
Teach	ing	Classroom Procedure (Mode of transaction	on)			
and		Authentic learning, case-based learning, collaborative learning,				
Learni	ng	seminar group activities				
Appro	ach	commar, group activitios.				
Asses	sment	Mode of Assessment				
Types		Continuous Internal Assessment (CIA)				
		Seminar Presentation – a theme is to be discussed and identified				
		to prepare a paper and present in the seminar				
		Assignments				
		Semester End examination				

MAHATMA GANDHI UNIVERSITY

Internship/ Miniproject

School Name	School of E	School of Energy Materials					
Programme	M. Sc. Mate	M. Sc. Material Science (Specialization in Energy Science)					
Course Name	Internship/	Miniproj	ect				
Type of Course	Core						
Course Code	EMM23C93						
Course Summary & Justification	The candida industries or internal pan- department.	The candidate shall do a 20 days internship in any of the industries or do a miniproject. The report will be evaluated by internal panel of experts authorized by director of the department.					
Semester	1		Credit		3		
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutorial	Practica I	Others	s Total Learning Hours	
	Authentic learning Collaborati ve learning Case based learning	-	40	40	40	120	
Pre-requisites	Aptitude for research work in one of the interdisciplinary areas in the realm of interface between physical science and nanotechnology. Literature survey.						
Others- Library, seminar and assignment preparations, test, journal, discussion etc.							

Electives

STANDHILL A	MAHATMA GANDHI UNIVERSITY				
विद्याया अप्रुतमानमूत	Energy device and fabrication				
School Name	School of Energy Materials				
Programme	MSc. Material Science (Specialization in Energy Science)				
Course Name	Energy device and fabrication				
Type of Course	Elective				
Credit Value	3				
Course Code	EMM23E31				

Course Summary & Justification	This course aims to introduce materials that revolutionize the current world with various energy options. The materials that control the performance of various energy sources such as photovoltaic devices, fuel cells and energy storage are explored. This course covers the theory, design, fabrication and applications of materials and devices for energy applications. Device processing topics include crystal growth, substrate engineering, thin film deposition, etching and process integration for silicon and compound semiconductor materials. The course also covers different material characterization techniques and working principles of various measuring devices. This course will introduce students to the rapidly developing field of nano-engineered materials with special focus on energy related applications						
Semester	III						
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
, ,	Authentic learning Collaborative learning Case based learning	40	40	0	40	120	
Pre-	Basic knowledge in	n photovol	taic and e	nergy stora	age devic	es	
requisite							
Others- Library, field work, seminar and assignment preparations, test, journal, discussion etc.							

CO	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	To understanding the concepts of device fabrication technologies.	U,R	1
2	To analyze the material design and relate to photovoltaic device and analyze their quantum efficiency.	U,An	4
3	To develop an attitude of innovation/creativity towards material design for various energy harvesting devices.	An, Ap	2,9
4	Understanding of principles of operation of modern devices for electrochemical energy conversion and storage. Super Capacitor, Electrochemical supercapacitors. Nanostructured Carbon-based materials.	U, An	2,6
*Ren (C), \$	nember (R), Understand (U), Apply (A), Analyse (An), Ev Skill (S), Interest (I) and Appreciation (Ap)	valuate (E),	Create

Module	Module Content	Hrs	CO. No
Module 1	Device fabrication technologies: diffusion, oxidation, photolithography, sputtering, physical vapor deposition, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), hot wire CVD (HWCVD)	10 Hrs.	1
<u>Module 2</u>	High efficiency solar cells, PERL Si solar cell, III-V high efficiency solar cells, GaAs solar cells, tandem and multi-junction solar cells, solar PV concentrator cells and systems, III - V, II - VI thin film solar cells; Amorphous silicon thin film (and/or flexible) technologies, multi-junction (tandem) solar cells, organic/flexible solar cells, polymer composites for solar cells, Spectral response of solar cells, quantum efficiency analysis, dark conductivity, I-V characterization	10 Hrs.	2

Module 3	Materials and devices for energy storage; Batteries, Carbon Nano Tubes (CNT), fabrication of CNTs, CNTs for hydrogen storage, CNT polymer composites, ultra capacitor; Polymer membranes for fuel cells, PEM fuel cell, Acid/alkaline fuel cells	10 Hrs.	3
<u>Module 4</u>	Super Capacitor, Electrochemical supercapacitors, Basic components of supercapacitors, types of electrodes like high surface area, activated carbons, metal oxide and conducting polymers, aqueous and organic electrolytes, Nanostructured Carbon-based materials Electrical double layer model - Principles and materials design Redox capacitor Nano Oxides, Conducting polymers-based materials	10 Hrs.	4

Teaching	Classroom Procedure (Mode of transaction)
and	Authentic learning, case-based learning, collaborative learning,
Learning	seminar, group activities.
Approach	
Assessment	Mode of Assessment
Types	7. Continuous Internal Assessment (CIA)
	8. Seminar Presentation – a theme is to be discussed and
	identified to prepare a paper and present in the seminar
	9. Assignments
	C. Semester End examination

Text Books:

- [1] Robert F.P.(2002). Advanced Semiconductor Fundamentals, 2nd Edition, Pearson
- [2] Duncan W.B., Dermot O., and Richard I.W.(2011). *Energy Materials*,1st Edition, Wiley
- [3] Linden D. and Reddy Thomas B., "Handbook of Batteries", 2001, McGraw Hill Publications 5. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd Edition, Wiley (2003)

Reference Books:

- [1] Fahren bruch A.L. and Bube R.H.(1983);*Fundamentals of Solar Cells: PV Solar Energy Conversion*, Academic Press
- [2] Tom M. and Luis C. (2005). *Solar Cells: Materials, Manufacture and Operation*,1st Edition, Elsevier Science
- [3] Christoph B., Ullrich S. and VladimirD.(2014). *Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies*, 2nd Edition, Wiley-VCH
- [4] San P.J. and Pei K.S. (2013). *Nanostructured and Advanced Materials for Fuel Cells*,1st Edition, CRC Press
- [5] Daniel C. And Besen hard J.O.(2011). Handbook of Battery Materials, 1st Edition Wiley-VCH

- [6] Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
- [1] Francois Beguin and ElzbietaFrackowiak ,"Super capacitors", Wiley, 2013
- [2] Science and Technology of Lithium Batteries-Materials Aspects: An Overview, A. Manthiram, Kulwer Academic Publisher (2000).

HI CONTRACTOR	MAHATMA GANDHI UNIVERSITY						
मिलावा अमृतमप्रनुते	HYDROGEN AND FUEL CELLS						
School Name	School of Energy	y Materia	ls (SEM)				
Programme	MSc. Material Sc	ience (S	pecializat	tion in Er	nergy sc	ience)	
Course Name	HYDROGEN AND	D FUEL C	ELLS				
Course Credit	3						
Type of Course	Elective						
Course Code	EMM23E21						
Course Summary & Justification	In this course, we will cover various concepts, reactions and applications of Fuel Cells. The main focuses are; Electrochemistry Basics - Chemical concepts to understand the foundation of Fuel Cells, Definitions and History - Simple definitions, history connected to political and economic motivations, Fuel Cell Chemistry - Fundamental processes in a Fuel Cell and their efficiency						
Semester	1						
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutoria I	Practic al	Other s	Total Lear ning Hour s	
		40	40	0	40	120	
Pre-requisite	General Chemistry and Physics, Introductory Materials Science, Elementary Semiconductor Theory, Thermodynamics of Materials.						

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the basic elements of fuel cells	U, R	1,2
2	Identify the potential of hydrogen fuel cells and its applications in various sectors of the society.	U, C	2,4
3	Familiarise the concept of hydrogen production techniques	U, I	2,3
4	Gain knowledge in various fuel cells, devices and systems.	A, S	3,6
5	To impart knowledge on learning and facts of usage in fuel cells	U, R	3,7
6	Exposure to different fuel cells	E, S	4,7
7	To impart awareness on significance of various application knowledge in fuel cells in the future technological applications.	E, Ap.	3,7
*Reme Create	ember (R), Understand (U), Apply (A), Analyse (A e (C), Skill (S), Interest (I) and Appreciation (Ap)	n), Evaluate	e (E),

Module No:	Module Content	Hrs	CO. No.
1	HYDROGEN ENERGY ECONOMY Hydrogen Energy Economy – Conception - Present status and a vision – Applications of Hydrogen - Transport application - cars, light trucks, buses - Stationary and Portable - Electronic gadgets.	10	1,2
2	HYDROGEN AND PRODUCTION TECHNIQUES Hydrogen – Physical and chemical properties - Salient characteristics - Production of hydrogen – Steam reforming – Water electrolysis – Gasification and	8	3,4

	woody biomass conversion – Biological hydrogen production – Photo dissociation – Direct thermal or catalytic splitting of water.		
3	HYDROGEN STORAGE & TRANSPORT Hydrogen storage options – Compressed gas – Liquid hydrogen – Hydride – Chemical Storage – Comparisons - Transport of Hydrogen - Pipelines, Gaseous, Liquid and Compound materials.	10	5
4	FUEL CELLS History – Principle - Working - Thermodynamics and kinetics of fuel cell process – Performance evaluation of fuel cell – Comparison on battery Vs fuel cell - Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – Relative merits and demerits.	10	5,6
5	APPLICATION OF FUEL CELL Fuel cell usage for domestic power systems - Large scale power generation –Automobile - Space - Environmental analysis of usage of Hydrogen in Fuel cell - Future trends in fuel cells.	12	6,7

Teaching	Classroom Procedure (Mode of transaction)					
and	Contact classes, Tutorials, Seminar, Assignments, Authentic					
Learning	learning, Library work, independent studies, Presentation by					
Approach	individual student					
Assessme	Mode of Assessment					
nt Types	A. Continuous Internal Assessment (CIA)					
	 Surprise test 					
	 Internal Test – Objective and descriptive answer type 					
	 Submitting assignments 					
	 Seminar Presentation – select a topic of choice in the 					
	concerned area and present in the seminar					
	B. Semester End examination					

REFERENCES

1. Hydrogen and Fuel Cells: A Comprehensive Guide, Rebecca L. and

Busby, Penn Well Corporation, Oklahoma, (2005).

2. Hydrogen and Fuel Cells: Emerging Technologies and Applications,

Bent Sorensen (Sorensen), Elsevier, UK, (2005).

3. Fuel Cell and Their Applications, Kordesch, K and G.Simader, WileyVch, Germany ,(1996).

4. Fuel Cells: Theory and Application, Hart, A. B and G.J.Womack,

Prentice Hall, New York Ltd., London, (1989).

AND HI CAN	MAHATMA GANDHI UNIVERSITY				
THEFT SPERTURE	METALS, CERAMICS AND COMPOSITE MATERIALS FOR ENERGY APPLICATIONS				
School Name	School of Energy Materials				
Programme	MSc. Material Science (Specialization in Energy Science)				
Course Name	Metals, Ceramics and Composite Materials for Energy Applications				
Type of Course	Elective				
Credit Value	3				
Course Code	EMM23E32				

Course Summary & Justification	defects, electrical properties. In depth knowledge on dielectrics, magnetic properties. Concept on sintering, densification, thermal and mechanical properties. Knowledge on composite interface, metal, ceramic composites. This course aims to impart basic knowledge on atomic structure, diffusion mechanism, electrical properties. To introduce the basic concepts on magnetic properties, dielectrics, magnetism, solid state sintering, densification and coarsening processes. To familiarize thermal expansion, creep and thermal stress. To give the concept of analysing the thermal and mechanical properties. Understanding the concept of composites, bonding interfacial properties and also metal matrix, ceramic matrix composites for energy applications.					
Semester	III					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
		40	40	0	40	120
Pre- requisite	Basic knowledge of Chemistry (1st year level). Any discipline of mechanical engineering, production engineering, polymer technology, chemical engineering, chemistry and physics can complete the course. Basics of different properties such as electric, magnteic, thermal, and mechanical properties.					

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the concept of electrical, magnetic, thermal,	U	1
	mechanical properties of metals, composites for energy applications		
2	To learn about various properties for energy applications	U, A, R, An	1
3	To impart knowledge on analyzing the properties of materials used for energy applications.	U, R, A	3
4	To understand the fundamentals, basics and properties of materials	U, R, I	1,3,6
5	To study the basics of polymers and their application in energy systems and devices.	U, A, R, S, I, An C	4
6	Will understand Superconducting nano-materials & their properties and applications	U, R, S, I, An	2,4
7	Will understand in depth knowledge in mechanical and thermal properties	U, A, R, An	1,2,5
8	Upon completion of the course, the students will have the knowledge of composite materials, interfaces, reinforcements	U, R, S, I, An, A	2,3
*Ren (C), \$	nember (R), Understand (U), Apply (A), Analyse (An), E Skill (S), Interest (I) and Appreciation (Ap)	valuate (E),	Create

Module	Module Content	Hrs	CO.				
No:			No.				
<u>Module 1</u>	Atomic structure: Atomic structure and bonding, Crystal structures lattices, indices etc with examples of atomic structures and bonding types, Order and disorder, Diffusion mechanisms, Deformation mechanisms, Classes of metals, Point defects, line defects, surface and volume defects, Strengthening	10 Hrs.	4				
Module 2	Ceramic crystal structures: Ceramic crystal structures, Atomic defects including intrinsic and extrinsic point defects, Electrical properties including ferroelectrics, thermistors, electrical conductors, dielectrics, Magnetic properties including ferromagnetic and ferromagnetic materials.	12 Hrs.	1,2,3,4				

<u>Module 3</u>	Dielectrics: Dielectrics, ferroelectrics and magnetoceramics, Magnetism: Dia-, Para, Ferro-, Antiferro-, Ferri-magnetism, Magnetic properties: Gaint magnetoresistance, Tunneling magnetoresistance, Colossal magnetoresistance, Superparamagnetism, High Tc materials: YBCO and Bi-systems (Brief idea), Superconducting nano- materials & their properties and applications.	13 Hrs.	1,3,6
Module 4	Solid state sintering: Solid state sintering, Densification and coarsening processes, Grain boundary mobility, Porosity evolution (stability/entrapment), Thermal properties including thermal expansion, creep, and 44 thermal stress, Mechanical properties including strength, toughness, and microstructural design	12 Hrs.	1,7
Module 5	Composites: Composite Interfaces, Bonding Mechanisms, Other Interfacial properties, Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Composite Strengths, Fibers as reinforcements	13 Hrs.	1,5,7,8

Teaching	Classroom Procedure (Mode of transaction)				
and	Contact classes, Tutorials, Seminar, Assignments, Authentic				
Learning	learning, Library work, independent studies, Presentation by				
Approach	individual student				
Assessment	Mode of Assessment				
Types	C. Continuous Internal Assessment (CIA)				
	Surprise test				
	Internal Test – Objective and descriptive answer type				
	Submitting assignments				
	Seminar Presentation – select a topic of choice in the				
	concerned area and present in the seminar				
	D. Semester End examination				

REFERENCES

- 01. Introduction to Materials Science and Engineering, William J Callister, John Wiley & Sons, Inc.
- 02. K. Vijayamohanan Pillai and Meera Parthasarathi Functional Materials: A Chemist's Perspective by, Orient Blackswan (21 November 2013)
- 03. Physical Metallurgy Principles Reed-Hill R. E., and R. Abbaschian, 3rd ed. Boston: PWS-Kent, 1992.
- 04. Structure and Properties of Engineering Alloys Smith, W. F., McGrawHill, 1981.

- 05. Introduction to Ceramics W. D. Kingery, H.K. Bowen, D.R. Ulhmann.
- 06. Treatise on Inorganic Chemistry, Vol. II: Subgroups of the periodic table and general topics, Preparation of Metals H. Remy, Elsevier, 1956.
- 07. Synthesis of Advanced Ceramic Materials David Segal.
- 08. Fundamentals of Polymer Science: An Introductory Text P. Painter and M. Coleman, Technomic, 1997
- 09. Composite Materials: Engineering and Science F. L. Matthews and R. D. Rawlings, Chapman & Hall 1994
- 10. Ceramic Processing and Sintering M.N. Rahman, Marcel Dekker, Inc.

SchoolName	School of Energy Science
Programme	MSc. Material Science (Specialization in Energy Science)
Course Name	RESEARCH METHODOLOGY
Type of Course	Elective
Credit Value	2
Course Code	EMM23E34

Course Summary & Justificatio n	This course provides of research. It also is done, research pre- encountered by rese- the formulation of hy course will provide a steps in sampling ar course will also prov- spreadsheet tool, of analysis. The studer and functions, cre- showing presentation engine like Google, describes about int tables and figures, re- factor, and h-index.	introduct helps the rocess, cr archers in ypothesis strong for d advant ide a dee data stori nts will lea ating pre n and als Yahoo etc erpretatio esearch-s	ion, meaning students iteria of go n India. S and review oundation in ages and l p awarene ng, and f arn about the sentation, o about us c, advance n and rep cientific mi	ng, object to unders ood resea tudents w w of litera n sampling limitations so n cor eatures f customi e of Inter d search oort writin sconduct,	ives and stand ho arch, and vill be at ature. Le g theory s of sam mputer a for stati tation to zing pr net, WW techniqu g, pres plagiari	motivation w research d problems ble to study arning this , types and pling. The pplications stical data ol, features esentation, /W, search ues. It also entation of sm, impact
Semester						
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutorial	Practic al	Other s	Total Learning Hours
	Authentic learning, collaborative learning, independent learning	40	40	0	40	120
Pre- requisite	Basic knowledge ab	out condu	icting resea	arch work	S	

CO	Expected Course Outcome	Learnin	PSO
No.	Upon completion of this course, students will be able to;	g Domain s	No.
1	Understand the meaning, objectives, types, significance of research, and importance of knowing how research is done	R,U	1,2,3
2	Able to acquire the knowledge about sampling technique and computer applications	U,A	2,3,4
3	Learn about presentation tool, features and functions, creating presentation	A,C,An	2,3,5
4	Gather information about use of Internet, WWW, search engine and advanced search techniques.	U,An,E	1,6,7

5	Learn the interpretation, significance of report writing,	An,S,I	2,3,9			
	different steps in writing report					
*Remember I, Understand (U), Apply (A), Analyse (An), Evaluate I, Create (C),						
Skill (S), Interest (I) and Appreciation (Ap)						

Module No:	Module Content	Hrs	CO. No
<u>Module 1</u>	Research methodology: An Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India Questions-Research design- Formulation of hypothesis- Review of literature.	15 Hrs	1,2
<u>Module 2</u>	Sampling technique: Sampling theory, Types of sampling, Steps in sampling- Sampling and Non-sampling error, Sample size, Advantages and limitations of sampling. Computer applications: Spreadsheet Tool: Introduction to spreadsheet application, features and functions, using formulas and functions, Data storing, Features for Statistical data analysis, Generating charts/ graph and other features. (Microsoft Excel or similar tool).	15 Hrs	1,2
<u>Module 3</u>	Presentationtool:Introductiontopresentationtool, features and functions, creating presentation, presentation,customizing presentation.(Microsoft Power Point)Web Search:Introduction to Internet, Use of Internet and WWW, Using search engine like Google, Yahoo etc, advanced search techniques.	15 Hrs	2,3,4
Module 4	Interpretation and report writing: Meaning of Interpretation, Why Interpretation?	15 Hrs	2,4,5

in
ng,
of
ts,
ns,
ts,
ral
a
na
ific
h-

Teaching	Classroom Procedure (Mode of transaction)			
and	Contact classes, Tutorials, Seminar, Assignments, Authentic			
Learning	learning, Library work, independent studies, Presentation by			
Approach	individual student			
Assessment	Mode of Assessment			
Types	Continuous Internal Assessment (CIA)			
	Surprise test			
	Internal Test – Objective and descriptive answer type			
	Submitting assignments			
	Seminar Presentation – select a topic of choice in the concerned			
	area and present in the seminar			
	Semester End examination			

REFERENCES

- 1. Montgomery, C Douglas (2007), 5/e, Design and Analysis of Experiments, (Wiley India).
- 2. Montgomery, C Douglas. &Runger, George C. (2007), 3/e, Applied Statistics &Probability for Engineers (Wiley India).
- 3. C.K Kothari. (2004), 2/e, Research Methodology- Methods and Techniques (New Age International, New Delhi).
- 4. B.L Garg,.,RKaradia., F Agarwal,. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 5. C.R Kothari., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 6. S.C Sinha. and A.K Dhiman,., 2002. Research Methodology, Ess Publications. V2.
- 7. W.M.K Trochim,., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 8. B.L Wadehra, 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing. How to write a Technical report AlamSmithee, Fictitious Institute of Technology, 1999.
- 10. Hering Lutz, Hering Heike, Springer, 2010How to write technical reports-Understandabble structure, Good Design, Convincing presentation –

ALL	MAHATMA GANDHI UNIVERSITY							
REFERENCE STREET	NANOSENSORS AND NANODEVICES							
School Name	Sche	ool of Energy Ma	terials					
Programme	MSc	. Material Scienc	e (Specia	alization	in Energy	Science))	
Course Name	NAN	IOSENSORS AN	D NANO	DEVICES				
Type of Course	Elec	tive						
Credit Value	2							
Course Code	EMN	123E35						
Course Summary & Justification Semester		In the broadest critical enablers technological ca and biological sy at present are cl industry, the p Nanosensors an impact on our pollution, produc This course sum nanodevices whit	sense, n that will apabilities vstems. W early asso otential f d Nanode ability to a food, ar marizes ich have a	anosenso allow ma of electr /hile the b ociated wi for such evices will enhance nd improve the differe application	ors and na inkind to e conic, mag est examp ith the infor devices ultimately energy c e human he ent types o n in wide va	nodevice exploit the netic, me les of nar rmation te is much have an e conversion ealth and f nanoser ariety of fi	s are e ultim echani nodevi echnol broad enorme n, con longev nsors a elds.	the late cal, ces ogy der. ous ltrol /ity. and
Total Student Learning Time(SLT)		Learning Approach	Lecture	Tutorial	Practical	Others	Tot Learr Hou	al ning ırs
		Authentic learning Collaborative learning Independent learning	30	30	0	30	90	
Pre-requisite	;	Basics of sensors and microelectronics.						

CO	Expected Course Outcome	Learning	PSO No.	
No.		Domains		
1	Understand the basics of a sensor.	U	1	
2	Study the sensor characterization and modes of	U	1	
	packaging.			
3	Correlate and record data's of the medically	R	1	
	significant measures using a biosensor			
4	Apply the sensing of physical parameters sensed	E	1	
	to fabricate			
	appropriate sensors.			
5	Understand the processing of input signals of	E	1	
	sensors and applying it in electronics.			
*Remember(R),Understand(U),Apply(A),Analyse(An),Evaluate(E),Create(C),Skill(
S),Interest				
(I)and Appreciation(Ap)				

Module	Module Content	Hrs	CO.
No:			No.
Module 1	Micro and nanosensors:	8	1
	Fundamentals of sensors, biosensor, microfluids,	Hrs.	
	MEMS and NEMS Packaging and characterization of		
	sensors: Method of packaging at zero level, and first		
	level.		
	Active and Passive sensors - Static characteristic -		
	Accuracy, offset and linearity – Dynamic characteristics		
	- First and second order sensors-Physical effects		
	involved in signal transduction.		
Module 2	Nano material based Sensors:	8	2
	Nanomaterials in biochemical sensor design,	Hrs.	
	application for nanoparticles based on gold and		
	semiconductor materials (quantum dots). Synthesis of		
	nanomaterials (nano rod, nanoclusters, nanodiamond		
	and nano shells). Application of nanomaterial for		
	analytical purpose, important functions of nanoparticles.		
	Nanomaterials: Nanomaterial based colorimetric		
	sensors, metallic nanoparticles in sensing, surface		
	functionalization of gold nanoparticle, Fluorescence		
	based sensoring, electrical and electrochemical		
	sensing. Different type of sensors: Electrochemical,		

	Mass sensitive sensor, biochemical sensors and their applications. gold nanoparticle-based surface Plasmon resonance sensors, physical properties of gold nano particle: size dependent electronic and optoelectronic properties, fluorescence quenching, limit of detection and limit of quantification, sensitivity of the sensor, selectivity of measurements, linear range.		
<u>Module 3</u>	Mechanical Sensors and Actuators: Accelerometers (capacitive, piezoelectric, piezoresistive, thermal), Force sensors (strain gauges, tactile sensors), Pressure sensors (semiconductor, piezoresistive, capacitive, VRP), Gyroscopes (mechanical, optical, fiber-optics). Night Vision, System, Nano tweezers, nano-cutting tools, Integration of sensor with actuators and electronic circuitry, For other civil applications: metrology, bridges etc., gas sensors.	8 Hrs.	3
Module 4	Metal Insulators Quantum Structures and Devices:	8	4
	Metal Insulator Semiconductor devices, molecular	Hrs.	
	electronics, information storage, molecular switching, Schottky devices		
Module 5	Quantum Structures and Devices: Quantum layers,	8	5
	wells, dots and wires, Mesoscopic Devices, Nanoscale	Hrs.	
	Transistors, Single Electron Transistors, MOSFET and		
	Nano FET, Resonant Tunneling Devices, Carbon		
	Nanotube based logic gates, optical devices.		
	.Connection with quantum dots.		

Teaching	Classroom Procedure (Mode of transaction)				
and	Contactclasses, Tutorials, Seminar, Assignments, Authenticlearning, Library				
Learning	work, independentstudies, Presentation by individual student				
Approach					
Assessme	Mode of Assessment				
nt Types	A.Continuous Internal Assessment (CIA)				
	 Surprise test 				
	 Internal Test–Objective and descriptive answer type 				
	 Submitting assignments 				
	 SeminarPresentation— 				
	selectatopicofchoiceintheconcernedareaandpres				

entintheseminar B. Semester End examination

REFERENCE BOOKS:

1. Nanosensors: Physical, Chemical, and Biological, Vinod Kumar Khanna, CRC Press,2011.

2. Chemical Sensors: An Introduction for Scientists and Engineers, Peter Grundler, Springer.

3. Smart Sensors for industrial Applications, Krzysztoflniewski, CRCPress.

4. Introduction to Nanoelectronics, Science, Nanotechnology, Engineering, and Applications, Vladimir V.Mitin, Viatcheslav A.Kochelap, Michael A.Stroscio, Cambridge University Press, 2007.

5. Nanotechnology and Nanoelectronics, Fahrner, Wolfgang (Ed.), 2005, Springer.

6. Introduction to the Physics of Nanoelectronics, Tan & Jalil 2012. Woodhead publishing.

7. Fundamentals of Nanoelectronics, George W.H, Pearson education india 2009.

- 8. Current at the Nanoscale, Colm Durkan, University of Cambridge, 2008.
- 9. Nanotechnology and Nanoelectronics, Prof.Dr.W.R.Fahrner, Springer, 2005.
- 10. Nanoelectronics and information Technology, Rainer Weiser, 2012, Wiley.

11. Chemical Sensors and Biosensors; Brian, R Eggins; Wiley; NewYork, Chichester, 2002.

12. Biosensors: A Practical Approach, J.Cooper&C.Tass, Oxford UniversityPress,2004.

13. Nanomaterials for Biosensors, C S.Kumar, Wiley–VCH, 2007.

14. Smart Biosensor Technology, G.K.Knoff, A.S.Bassi, CRCPress, 2006.
| THE STREET | MAHATMA GANDHI UNIVERSITY | | |
|----------------|--|--|--|
| | Nanotechnology in Energy | | |
| School Name | School of Energy Materials | | |
| Programme | MSc. Material Science (Specialization in Energy Science) | | |
| Course Name | Nanotechnology in Energy | | |
| Type of Course | Elective | | |
| Credit Value | 2 | | |
| Course Code | EMM23E36 | | |

School Name	School of Energy Materials
Programme	MSc. Chemistry (Specialization in Energy Science)
Course Name	Nanotechnology in Energy
Type of Course	Elective
Course Code	EMM23E36
Course Summary & Justification	This main objective of this course is to give a theoretical and practical overview of nanotechnology with applications in energy production, conversion and storage. The specific objectives of this course are to familiarize with nanomaterials, manufacturing processes, characterization and also reliability characteristics. Upon completion of the course on Nanotechnology in Energy, students will understand the fundamental laws governing energy conversion and storage efficiency, the importance of favourable nanomaterials in the energy conversion, and storage application and reliability of materials. This paper encompasses a detailed exposure to the alternative energy technologies with a special focus on solar-photovoltaic, batteries and hydrogen-fuel cell technologies. The proposed course will be one of the elective courses to introduce students to applications of nanotechnology through five different modules. The modules are selected in order to have hierarchy in student learning in three different areas (renewable energy technologies, batteries, fuel cells, hydrogen storage and solar photovoltaics) of alternative energy technologies.

Semester	3		Credit		3	
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning	40	40	-	40	120
Pre-requisite	Basics of Energy production, conversion and storage systems. (Graduate Level)					
Others- Library, seminar and assignment preparations, test, journal, discussion etc.						

COURSE OUTCOMES (CO)

СО	Expected Course Outcome	Learning	PSO No.
No.	Upon completion of this course, students will be able to;	Domains	
1	The module encompasses a detailed exposure to energy challenges, development and implementation of renewable energy technologies. Nanotechnology enabled renewable energy technologies are also be discussed (Module 1)	U, A	1,2,7
2	This module discusses Nanomaterials for Energy Storage Systems. The student will able to understand principles and material design of different nanostructured carbon-based materials. Current status and future trends on energy storage systems are also discussed. (Module 2)	U, A	1,2,3,7
3	This module is to designed to help the students to provide adequate knowledge regarding nanomaterials in fuel cells, hydrogen Storage, thermoelectric materials (in nano scale), supercapacitors (Module 3).	An, E	2,3,7
4	Understanding of application of nanomaterials for hydrogen storage and photocatalysis.	E	2,3
5	This module gives an insights of role of various nanomaterials for Photovoltaic Solar Energy Conversion Systems.	An, E	2,3,7
*Reme (C), SI	ember (R), Understand (U), Apply (A), Analyse (An) kill (S), Interest (I) and Appreciation (Ap)	, Evaluate (l	E), Create

COURSE CONTENT

Module No:	Module Content	F	Hrs	CO. No.
<u>Module 1</u>	Renewable Energy Technology Energy challenges, development and implementation of renewable energy technologies, nanotechnology enabled renewable energy technologies, Energy transport, conversion and storage- Nano, micro, and poly crystalline and amorphous Si for solar cells, Nano-micro Si- composite structure, various techniques of Si deposition	1	15	1,2
Module 2	Nanomaterials for Energy Storage Systems Issues and Challenges of functional Nanostructured Materials for electrochemical Energy Storage Systems, Primary and Secondary Batteries (Lithium ion Batteries), Cathode and anode materials, Capacitor Electrochemical supercapacitors, electrical double layer model, Principles and materials design, Nanostructured Carbon- based materials, Nano-Oxides, Novel hybrid electrode materials, Current status and future trends.	1	15	2,3

Module 3	Nanomaterials in Fuel Cell and Storage Technology Micro-fuel cell technologies, integration and performance for micro-fuel cell systems, thin film and microfabrication methods, design methodologies, micro-fuel cell power sources, Supercapacitors, Specific energy, charging/discharging, EIS analysis.		
Module 4	Nanomaterials for Hydrogen Storage and Photocatalysis Hydrogen storage methods, metal hydrides, size effects, hydrogen storage capacity, hydrogen reaction kinetics, carbon-free cycle, gravimetric and volumetric storage capacities, hydriding/dehydriding kinetics, multiple catalytic effects, degradation of the dye, nanomaterials based photocatalyst design, kinetics of degradation.	15	3,4
<u>Module 5</u>	Nanomaterials for Photovoltaic Solar Energy Conversion Systems Principles of photovoltaic energy conversion (PV), Types of photovoltaics Cells, Physics of Photovoltaic cells, Organic photovoltaic cell cells, thin film Dye Sensitized Solar Cells, Quantum dot (QD) Sensitized Solar Cells (QD- SSC), Organic- Inorganic Hybrid Bulk Hetero Junction (BHJ-SC) Solar cells, Current status and future trends.	15	4,5

Assessment TypesMode of Assessment7.Continuous Internal Assessment (CIA)8.Seminar Presentation – a theme is to be discussed a identified to prepare a paper and present in the semin9.Assignments6.Semester End examination	nd nar
---	-----------

REFERENCES

- 1. Twidell. J. and Weir. T "Renewable Energy Resources", E & F N Spon Ltd, 1986.
- 2. Martin A Green, "Solar cells: Operating principles, technology and system applications", Prentice Hall Inc, Englewood Cliffs, 1981.
- Moller. H J "Semiconductor for solar cells", Artech House Inc, 1993. 4. Ben G Streetman, "Solid state electronic device", Prentice Hall of India Pvt Ltd., 1995
- 4. D. Linden Ed., Handbook of Batteries, 2nd edition, McGraw- Hill, New York (1995).
- 5. Handbook of fuel cells: Fuel cell technology and applications by Vielstich. Wiley, CRC Press
- 6. G.A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Kulwer Acdemic Publishers, Dordrecht, Netherlands (2004).
- 7. J. Larmine and A, Dicks, Fuel Cell System Explained, John Wiley, New York (2000).
- 8. Science and Technology of Lithium Batteries-Materials Aspects: An Overview, A. Manthiram, Kulwer Academic Publisher (2000).
- 9. Hydrogen from Renewable Energy Sources by D. Infield 2004

Accord and and and and and and and and and an	MAHATMA GANDHI UNIVERSITY
	Open Course

School Name	School of Energy Materials					
Programme	M.Sc. Material Science (Specialization in Energy Science)					
Course Name	Open Course					
Course Credit	4					
Type of Course	Core					
Course Code						
Course Summary & Justification	The students car department as interdisciplinary k	n opt. a g open co nowledge	eneral co ourse. It on variou	ourse offe aims us topics.	red by to pro	any of the vides the
Semester	III					
Total StudentLearni ngTi me (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Visiting other department and interact with expertises	-	-	-	-	-
Pre-requisite	Basic knowledge	in Scienc	e and Art	s topics.		

1To obtain interdisciplinary knowledge on a topic other than
students specific area.A,
S,<br/I</th>1, 2, 3

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Main aim of industrial visit is to provide an exposure
Approach	to students about practical working environment.
	They also provide students a good opportunity to
	gain full awareness about industrial practices.
	Through industrial visit students get awareness

	about new technologies.
Assessment	Mode of Assessment
Types	The report shall be evaluated by the
	Examination Board consisting of the
	Chairman, the Internal Examiner and the
	External Examiner.

SEMESTER IV

	MAHATMA GANDHI UNIVERSITY
मिलया अपूनापञ्चर	Industrial visit

School Name	School of Energy Materials					
Programme	M.Sc. Material Science (Specialization in Energy Science)					
Course Name	Industrial Visit	Industrial Visit				
Course Credit	3					
Type of Course	Core					
Course Code	EMM23C94					
Course Summary & Justification	The Industrial vis Materials. The stu of a faculty mem submit a report or	it shall be udents ha ber of the n the sam	e conducte ve to visit e School <u>e at the e</u>	ed by the an indust during the end of the	School try in the e progra fourth s	of Energy presence amme and emester.
Semester	IV					
Total StudentLearni ngTi me (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Visiting the industry and interacting with the personnel	-	-	-	-	-
Pre-requisite	Basic knowledge	in chemis	stry praction	cals and i	ndustria	ll chemistry

1	Demonstrate the applications of chemical concepts and principles		1, 2, 3
	learned in classroom.		
2	Illustrate processes and products manufactured in the chemical	А	2, 4
	industries.		
3	Develop awareness of the principles and technological aspects in	С	2
	the chemical industries.		
4	Improve interpersonal skill by communicating directly with	S	5
	industrial personnel.		
5	Aware of the impacts of industrial processes on health, safety,	Е	6, 7
	environment and society.		

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Main aim of industrial visit is to provide an exposure			
Approach	to students about practical working environment.			
	They also provide students a good opportunity to			
	gain full awareness about industrial practices.			
	Through industrial visit students get awareness			
	about new technologies.			
Assessment	Mode of Assessment			
Types	The report shall be evaluated by the			
	Examination Board consisting of the			
	Chairman, the Internal Examiner and the			
	External Examiner.			

MAHATMA GANDHI UNIVERSITY

Dissertation/Viva voce

School Name	School of Energy Materials						
Programme	M. Sc. Material Science (Specialization in Energy Science)						
Course Name	Dissertation	Dissertation/Viva -voce					
Type of Course	Core	Core					
Course Code	EMM23C95	EMM23C95					
Course Summary & Justification	 The candidate shall do a research project in any of the research institute. This follows discussion with the Examination Board consisting of the Chairman, the Internal Examiner and the External Examiner 						
Semester	4		Credit			13	
Total Student Learning Time (SLT)	Learning Approach	Lectur e	Tutorial	Practical	Ot	thers	Total Learning Hours
	Authentic learning Collaborati ve learning Case based learning	40	40		40)	120
Pre-requisites	Aptitude for research work in one of the interdisciplinary areas in the realm of interface between physical science and nanotechnology. Literature survey.						
Others-Library	, seminar and	d assignn	nent prepa	rations, te	st, j	iourna	l, discussion

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	At the end of the course the students are expected to		
1	Clearly present and discuss the research objectives, methodology, analysis, results and conclusions effectively.	A	1, 2, 3, 4, 5
2	Acquire a comprehensive knowledge of the area subject of study	Ар	1, 7
3	Gain deeper knowledge of methods in the topic of study.	А	6
4	Able to contribute to research and development work.	U	3
5	Undertake independent, original and critical research on a relevant topic.	U	5
6	Able to plan and use adequate methods to conduct specific tasks in given frameworks and to evaluate this work.	U	6
7	Create, analyse and critically evaluate different problems and their solutions.	С	7,8
8	Gain consciousness about the ethical aspects of research.	Е	6,9
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) E-learning, interactive Instruction: Seminar, Authentic learning, , Library work, laboratory work, Team work, independent learning and Group discussion, Presentation of research work.
Assessm	Mode of Assessment
ent	Evaluation of the presentation by both internal and external
Types	examiners.