School of Energy Materials Mahatma Gandhi University Priyadarshini Hills P.O., Kottayam-686560

CURRICULUM STRUCTURE AND SYLLABI BASED ON OUTCOME BASED EDUCATION

FOR

M.Tech Energy Science and Technology

UNDER THE CSS REGULATIONS 2020 OF MAHATMA GANDHI UNIVERSITY

PREFACE

I am happy to present the revised curricula and syllabi of the M.Tech. Energy Science and Technology programme of the School of Energy Materials according to the OBE concept (with effect from 2020 admission onwards) for favour of approval by the Faculty and Academic Council of the University.

We have restructured the curriculum as per the Outcome Based Education (OBE) system. OBE is an educational approach that bases each part of the educational system with respect to goals set by the students. OBE aims to equip the students (learners) with knowledge, competency orientations required for achieving their goals when they depart the institution. Further empowers students to choose what they would like to study and how they would like to study it. The teaching methodologies and the evaluation system are also modified in par with the outcome-based approach. The programme Specific Outcomes (PSOs) and the Course Outcomes (COs) are presented in the syllabus. The PSOs and the COs are well correlated in the syllabus of each course.

About Mahatma Gandhi University

Mahatma Gandhi University, one of the four affiliating Universities in Kerala, is the premier educational institution that strives to fulfil the higher educational needs of the people of Central Kerala. Set over the 100-acre Priyadarshini Hills Campus at Athirampuzha, 13 km off Kottayam, the University also has ten satellite campuses. The University was established on 2nd October 1983 and has jurisdiction over the revenue districts of Kottayam, Ernakulam, Idukki, and parts of Pathanamthitta and Alappuzha

Vision

"Mahatma Gandhi University envisions to excel in the field of higher education and cater to the scholastic and developmental needs of the individual, through continuous creation of critical knowledge base for the society's sustained and inclusive growth."

Mission

- To conduct and support undergraduate, postgraduate and research-level programmes of quality in different disciplines
- To foster teaching, research and extension activities for the creation of new knowledge for the development of society
- To help in the creation and development of manpower that would provide intellectual leadership to the community
- To provide skilled manpower to the professional, industrial and service sectors in the country so as to meet global demands

- To help promote the cultural heritage of the nation and preserve the environmental sustainability and quality of life
- To cater to the holistic development of the region through academic leadership

About School of Energy Materials

Energy efficiency and sustainability are two important factors that will decide the choice of the energy technology of the 21st century. The School of Energy Materials (SEM) department was established in 2019 at Mahatma Gandhi University, Kottayam Kerala, India. The department specifically focuses the in-depth knowledge in energy science and technology and carrying out cutting-edge research and development in a variety of sectors of energy science. The department also aims to focus on the enhancement of research and higher studies in the various areas of energy science and polymeric materials. The department deals with modern energy technologies and conversion strategies in various domains such as nano sensors, nanodevices, nanophononics, nuclear energy, photovoltaics, batteries, fuel cells, etc. In addition, (SEM) expertise in research fields including nanomaterials synthesis, nanocomposites, polymer blend nanocomposites, systems, and polymer nanocomposites for energy and electronic related applications. The School of Energy Materials offers an M.Tech course in Energy Science which is expected to meet the growing demand for young researchers in the area. The M.Tech course will equip students with the skills necessary to be successful in the area of sustainable energy technology.

Our Vision

To emerge as a department of excellence in energy science and to be instrumental in the material discovery and development cut across the entire energy technology portfolio, i.e. from energy generation and storage to delivery and end-use. SEM hopes to lay the foundation of every clean energy innovation: advanced batteries, solar cells, low-energy semiconductors, thermal storage, coatings, and catalysts for the energy conversion, capture, and use of carbon dioxide. The novel materials developed at the SEM can be counted as one of the cornerstones of the global transition to a low-carbon future.

Our Mission

Advanced materials are the key elements in the development of improved high-efficiency, low-cost, clean energy technologies. The department will be a platform for the publication of original articles and comprehensive reviews on all aspects of fundamental science and applied research on materials used for harvesting, conversion, storage, transmission, and utilization of energy.

• Promote and coordinate interdisciplinary research programs in the development of improved high-efficiency, low-cost, clean energy technologies.

- As a platform in the development of Energy science and Nanotechnology leading to the technological development and fabrication of nano-devices.
- To serve as a department of educational excellence for students and researchers by offering academic programs to generate intellectual manpower in specialized areas for societal needs.
- To initiate and establish strong collaborations with industries and R&D sectors of the country and abroad by providing consultancy services and research projects in Energy Science and Nanotechnology.
- The department will be a platform for the publication of original articles and comprehensive reviews on all aspects of fundamental science and applied research on materials used for harvesting, conversion, storage, transmission, and utilization of energy.
- To pave more attention to studies focused on Social, Ethical, Legal, and Environmental (SELE) issues related to Energy Science

Preamble

Outcome Based Education (OBE) w.e.f. the Academic Year 2020-22 School of Energy Materials, Mahatma Gandhi University

Introduction

A high priority task in the context of education in India is improvement of quality of higher education for equipping young people with skills relevant for global and national standards and enhancing the opportunities for social mobility. Mahatma Gandhi University has initiated an Outcome Based Education (OBE) for enhancing employability of graduates through curriculum reforms based on a learning outcomes-based curriculum framework, upgrading academic resources and learning environment. Learning outcomes specify what graduates completing a particular programme of study are expected to know, understand and be able to do at the end of their programme of study. The fundamental premise underlying the learning outcomes-based approach to curriculum development is that higher education qualifications are awarded on the basis of demonstrated achievement of outcomes, expressed in terms of knowledge, understanding, skills, attitudes and values. Outcomes provide the basis for an effective interaction among the various stakeholders. It is the results-oriented thinking and is the opposite of input-based education where the emphasis is on the educational process. **Outcome Based Education (OBE) process**

OBE is a comprehensive approach to organise and operate a curriculum that is focused on and defined by the successful demonstrations of learning sought from each learner. The term clearly means focusing and organising everything in an education system around "what is essential for all learners to be able to do successfully at the end of their learning experiences". OBE is an approach to education in which decisions about the curriculum and instruction are driven by

the exit learning outcomes that the students should display at the end of a programme or a course. By the end of educational experience, each student should have achieved the outcomes.

Benefits of OBE

The OBE Framework is a paradigm shift from traditional education system into OBE system where there is greater focus on programme and course outcomes. It guarantees that curriculum, teaching and learning strategies and assessment tools are continuously enhanced through a continuous improvement process. All decisions including those related to curriculum, delivery of instruction and assessment are based on the best way to achieve the predetermined outcomes. Traditionally, educators have measured learning in terms of 6 standardised tests. In contrast, outcome-based education defines learning as what students can demonstrate that they know.

Benefits of OBE:

- More directed & coherent curriculum.
- Graduates will be more "relevant" to industry & other stakeholders (more well-rounded Graduates)
- Continuous Quality Improvement is in place.
- OBE shifts from measuring input and process to include measuring the output (outcome)

<u>Learning Outcomes based Curriculum Framework (LOCF) for Post Graduate Programmes: IQAC MG</u> <u>University</u>

One of the main objectives of OBE is to ensure continuous improvement of programmes in terms of maintaining the relevance in curriculum as well as responding to the requirements of the stakeholders. an OBE system has been proposed and to be implemented at various Departments of Mahatma Gandhi University from 2020-21acdemic year onwards, as a quality-assurance approach to improve teaching and learning outcomes and processes. This OBE plan incorporates the "outcomes assessment" process to be followed in the departments. OBE should be a key driver of the curriculum management in all the departments of the university. Therefore, as envisaged by the IQAC of Mahatma Gandhi university, an OBE based curricular framework has been proposed for the Master programme of School of Energy Materials w.e.f. the academic year 2020- 2021 which is presented hereafter. In this regard, we have framed the syllabus in accordance with the programme outcomes of Mahatma Gandhi University listed below.

Programme Outcomes (PO) of Mahatma Gandhi University

PO 1: Critical Thinking and Analytical Reasoning Capability to analyse, evaluate and interpret evidence, arguments, claims, beliefs on the basis of empirical evidence; reflect relevant implications to the reality; formulate logical arguments; critically evaluate practices, policies and theories to develop knowledge and understanding; able to envisage the reflective thought to the implication on the society.

PO 2: Scientific Reasoning and Problem-Solving Ability to analyse, discuss, interpret and draw conclusions from quantitative/qualitative data and experimental evidences; and critically evaluate ideas, evidence and experiences from

an unprejudiced and reasoned perspective; capacity to extrapolate from what one has learned and apply their competencies to solve problems and contextualise into research and apply one's learning to real life situations.

PO3: Multidisciplinary/Interdisciplinary/Transdisciplinary Approach Acquire interdisciplinary /multidisciplinary/transdisciplinary knowledge base as a consequence of the learning they engage with their programme of study; develop a collaborative-multidisciplinary/interdisciplinary/transdisciplinary-approach for formulate constructive arguments and rational analysis for achieving common goals and objectives.

PO 4: Communication Skills Ability to reflect and express thoughts and ideas effectively in verbal and nonverbal way; Communicate with others using appropriate channel; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner and articulate in a specific context of communication.

PO 5: Leadership Skills Ability to work effectively and lead respectfully with diverse teams; setting direction, formulating a goal, building a team who can help achieve the goal, motivating and inspiring team members to engage with that goal, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 6: Social Consciousness and Responsibility Ability to contemplate of the impact of research findings on conventional practices, and a clear understanding of responsibility towards societal needs and reaching the targets for 12 attaining inclusive and sustainable development.

PO 7: Equity, Inclusiveness and Sustainability Appreciate equity, inclusiveness and sustainability and diversity; acquire ethical and moral reasoning and values of unity, secularism and national integration to enable to act as dignified citizens; able to understand and appreciate diversity, managing diversity and use of an inclusive approach to the extent possible. **PO 8:** Moral and Ethical Reasoning Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work and living as a dignified person in the society. **PO 9:** Networking and Collaboration Acquire skills to be able to collaborate and network with scholars in an educational institution, professional organizations, research organizations and individuals in India and abroad.

PO 10: Lifelong Learning Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Eligibility for Admission

i)M. Sc in Nanoscience and Nanotechnology, Physics, Chemistry, Materials Science, Polymer science or an equivalent degree with not less than 50% Marks

ii) B. Tech in Nanoscience and Nanotechnology or Chemical Engineering/Technology or Polymer Engineering/Technology or Electronics and Communication or Biotechnology or Material Science or Mechanical, or Civil an equivalent degree with not less than 50% marks.

iii) Subject to the regulation relating to prescribed minimum of the respective qualifying examination, the minimum marks for the admission to the course of studies shall be a pass in the case of SC/ST candidates.

iv) Candidates belonging to Socially and Educationally backward classes (SEBC) referred to GO(P)208/66Edn dated 2-5-96 and subsequent amendments to the order issued by the Government shall be given a relaxation of 2% marks in the prescribed minimum for the admission

v) A relaxation of 5% marks from the prescribed minimum shall be allowed in the case of physically handicapped persons.

vi) Candidates who have passed the qualifying examination in more than one chance in the subject (excluding languages) will have their percentage marks de-rated at the rate of 5% for every additional appearance for the purpose of ranking.

Admission Procedure

Candidates have to appear for the Common Admission Test (CAT) conducted by the MG University in April/ May of every year. The questions will be of objective multiple-choice type. Any other conditions prescribed by MG University from time to time in this regard will be applicable. Relaxation of marks and Reservation of seats under SC/ST are based on University/ Government Rules. Admission may be based on the written test alone or written test and interview or on the basis of the marks obtained in the qualifying examinations as well as the marks obtained in the written test, the interview and/or the group discussion conducted by the respective Schools as decided by the Faculty Council of Schools/Centres/Institutes from time to time. The Rank list for admission will be prepared as per university guidelines. While preparing the rank list, if there is same index marks for more than one candidate, they will be ranked on the basis of date of birth that is the older person is to be ranked higher. The duration of the M Tech programme of SEM is of two years consisting of four semesters. Each semester shall comprise of a minimum of 18 instructional weeks. Every semester will be adjusted to have at least 90 working days. Continuous Internal Assessment based evaluation during the course period and End Semester Examination at the end of each semester shall be conducted.

Course Registration

A student must register for the required number of courses as per specific curriculum of a programme, after the commencement of class of that semester. Each student shall have a course card for each semester, wherein the title of the courses and corresponding course codes are entered and signed by the student, the faculty member offering the course and countersigned by the Director/Head of the Department. Based on this, a consolidated statement of courses to which registration is granted for the semester is to be prepared by the department. This statement must be signed by the Director/Head of the department and has to be submitted to the CSS section of the examination branch of the University within 20 days after the commencement of class of each semester

Evaluation

There shall be continuous internal assessment as well as end semester examinations for all the courses. Evaluation of the first and third semester courses shall be done by the respective faculty members of SEM. End semester Examination of second and fourth semesters shall be conducted based on the question paper set by External Examiners. There will be double valuation of answer scripts of the end semester examination of the even semesters of the MTech programme. One valuation shall be conducted by External Examiner and the other by the faculty member who taught the course. External Examiner should be a competent person in the specified subject from other Universities/ Institutes. A panel of External Examiners is prepared based on recommendation of Faculty Council of SEM and approval of the same by Vice Chancellor.

Indirect Grading is employed for the evaluation of courses. The performance of a student in each course is evaluated in terms of percentage of marks converted to grade points. Students have to secure a minimum attendance of 75% to appear for the end semester examination. A separate minimum of 40% of marks is required in the Continuous Assessment (CA) as well as End semester examination for a pass in a course. Students who fail to obtain minimum of 40% mark in the Continuous Assessment can request the faculty council for a chance to improve the marks. The faculty council may permit the student to secure the minimum mark in CA, by conducting written Tests. However, only one chance will be given to improve CA marks.

Process of Evaluation

The internal assessment will be a continuous assessment (CA) that accounts for 40% of the evaluation in both theory and practicals. The end semester examination will account for the remaining 60% of the evaluation.

End-Semester Examination: The end semester examination will account for 60% of the evaluation. The evaluation of the end-semester examination of the first and third semesters shall be done by the faculty who taught the course. Evaluation of the 2nd and 4th semester courses based on questions set by external experts shall be evaluated by two examiners; one, the external (as far as possible the question paper setter shall evaluate the examination paper as well) and the other, internal examiner, the faculty who taught course. The Head of the School will make necessary arrangements for the evaluation of the answer scripts. The project report/dissertation shall be evaluated by two examiners, one the faculty member of the school and the other an external examiner to be decided by the HOD from a panel recommended by faculty council and approved by the Vice Chancellor. The comprehensive viva-voce will be carried out along with project evaluation.

Continuous Assessment (CA): The student's participation and classroom performance as well as the feedback received from tests, tutorials, assignments and term papers shall form the basis for continuous assessment (CA). It accounts for 40% of the evaluation in both theory and practical. This assessment shall be based on a predetermined transparent system involving periodic written tests, assignments and seminars in respect of

theory courses and based on tests, lab skill, records/viva and attendance in respect of practical courses.

The percentage of marks assigned to various components for internal evaluation is as follows:

a. Theory

Sl. No	Components	% Of marks
1.	Test Papers (2)	60
2.	Assignment/Debates/Book review	20
3.	Seminar/Presentation of Case study	20

b. Practical's

Sl. No	Components	% of internal
		marks
1.	Lab skill	25
2.	Observation and recording results	25
3.	Punctuality and neatness	20
4.	Viva-voce	30

Test Papers: For each course there shall be at least three class tests during a semester. Average of the marks obtained in the best two tests will be counted as the internal test component of CAS. Valued answer scripts shall be made available to the students for perusal within 10 working days from the date of the tests.

Assignments: Each student shall be required to do 2 assignments for each course. Assignments after valuation must be returned to the students. The teacher shall define the expected quality of the above in terms of structure, content, presentation and the like, and inform the same to the students. Punctuality in submission of assignments/records is to be given a weightage in the internal evaluation.

Seminar: Every student shall deliver one seminar as an internal component of every course and must be evaluated by the respective course teacher in terms of structure, content, presentation and interaction. The soft and hard copies of the seminar report are to be submitted to the teacher in charge.

Results of Continuous Assessment: The results of the CA counter-signed by Head of the school/Centre shall be displayed on the notice board 5 days before the end semester examinations. The marks awarded for various components of the CA shall not be rounded off, if it has a decimal part. The total marks of the CA shall be rounded off to the nearest whole number. Relevant records of continuous assessment (CA) must be kept in the department and that must be made available for verification.

Project Work: There shall be a project to be undertaken by all students. The dissertation entails field work, lab work, report writing, presentation and viva voce. The class hours allotted for project work may be clustered into a single slot so that students can do their work at parent school or other institution for a continuous period of time. However, appropriate changes can be made by the faculty council in this regard. Project/dissertation shall be carried out under the supervision of a teacher in the parent School/Centre/Institute or other research institutes or industrial establishment or university departments if they permit the students to do so, after getting permission from the Department Head. In such cases, one of the teachers from the schools/centres/institutes would be the co-

supervisor/internal guide and an expert from the industry/ research organization concerned shall act as supervisor/ external guide.

Process of evaluation of project work in the end of fourth semester: The evaluation of the project in the end of the fourth semester will be done by external examiner, based on the work done by the student, content, presentation of the project work and a viva voce. A panel of External Examiners is prepared based on recommendation of Faculty Council and approval of the same by Vice Chancellor.

There is no provision for improving the continuous assessment/ final evaluation of the project.

Pattern of Question papers for the End- Semester Written Examination

The question papers set for the end-semester written examination will have three sections and carry 60 marks as detailed below:

Section A – Fifteen short answer questions, minimum one from each Unit. Students will have to answer any twelve. Each question will carry three marks (Total 36 marks).

Section B – Six short essay questions, minimum one from each Unit. Students will have to answer any four. Each question will carry 6 marks (Total 24 marks).

Both sections will contain questions covering all the cognitive levels Remembering/ Understanding/Applying/Analysing/ Evaluating and Creating. There will be questions of higher levels of learning for at least 10 marks

The End Semester Examination (ESE) will be of three hours duration and carry 60 marks. The ESE for the core and elective courses shall be conducted based on the following pattern of question paper.

Section	Cognitive level	Choice and	Question	Total	Alignment
		marks of	specification	Marks	with Course
		questions			outcomes
					(COs)
Section A	Remembering/	12 out of 15	Minimum one	36	Aligned with
	Understanding/Applying/Evaluating	questions; 3	question from		COs
		marks each	each unit		
Section B	Applying/Analysing/ Evaluating/Creating	4 out of 7	minimum one	24	Aligned with
		questions; 6	question from		Cos
		marks each	each unit		
			Total	60	

The cognitive levels of questions in the End Semester Examinations are summarised as:

- Lower levels of learning (Remembering/Understanding/Applying): 30 to 40%
- Higher Levels of Learning (Analysing/Evaluating/Creating): 60 to 70%

The **difficulty levels** of questions in the End Semester Examinations are categorised as Low, Medium and High. The percentage of questions in each level of difficulty is given below:

- Low: 20 to 30%
- Moderate: 55 to 65%
- High: 15 to 25%

Grading System

The performance of a student in each course is evaluated in terms of percentage of 21 marks with a provision for conversion to grade points. The grading system followed is that of relative grading on a ten-point scale. The following table indicates the performance range and the relative value of the grades (grade points) on the scale.

Performance range and the Relative value of the Grades (Grade points)

Range of % of marks	Letter Grade	Performance	Grade points
95 to ≤100	0	Outstanding	10
85 to \leq 95	A PLUS	Excellent	9
75 to \le 85	A ONLY	Very Good	8
$65 \text{ to} \le 75$	B PLUS	Good	7
55 to \leq 65	B ONLY	Above Average	6
45 to \leq 55	С	Average	5
40 to \leq 45	Р	Pass	4
≤ 40	F	Fail	0
Absent	Ab	Absent	0

Minimum grade for passing in a course or programme: The minimum for a pass in a course is 'P' grade. The minimum credit point requirement (CGPA) for the programme is four.

Revaluation

The answer scripts of examinations under CSS shall have provisions for revaluation. Evaluation or Scrutiny of answer scripts for the first and third semester is provided. There is no provision for revaluation or scrutiny of answer scripts for the End Semester Examinations for 2nd and 4th Semesters as double valuation is performed on the scripts. The application for scrutiny and revaluation of answer scripts shall be submitted to the Head of the concerned School/ Department/ Centre within 15 days from the date of publication of the results.

Reappearance and improvement in Examinations:

A student who failed for a course in a semester can register for Reappearance in the forthcoming examination, subject

to the conditions set forth in these regulations. Improvement of marks/grades in the forthcoming examination can be done, subject to the conditions set forth in these regulations.

Registration for Improvement

A candidate has to apply for registration for improvement by paying the requisite fee. Candidates are not permitted to register for improvement of grades for Individual course. Candidates in the 1st and 2nd semesters, who have secured SGPA letter grade 'P' or above in the End Semester Examination can improve their grade by reappearing for all the semester courses along with the next immediate batch. In such cases a candidate will be awarded a new grade only if there is an improvement in grade in the new examination; otherwise, the candidate is eligible to retain the grade already awarded. Candidates in the 3rd semester, who have secured the SGPA letter grade 'P' or above in the End Semester Examination, can improve their grade by reappearing for all the semester courses, along with the 3rd semester supplementary examination being conducted for failed candidates immediately after the completion of End Semester Examination of Fourth semester. This provision is applicable only for third semester. Improvement of the 4th semester can be done along with the immediate lower batch. If the improvement is meant to obtain minimum CGPA requirement, a candidate has the option to decide which semester (3rd or 4th) is to be improved; however, the grade given to the candidate shall be that obtained for the entire semester improvement examination. 1st and 2nd semester SGPA cannot be improved after the completion of the 4th semester. Only 3rd and 4th semester SGPA can be improved after the completion of a programme. The marks/grades awarded for Continuous assessment and that for the Project/dissertation cannot be improved. SGPA secured in the 4th semester can be improved only for the purpose of fulfilling the minimum CGPA requirement.

Reappearance

Candidates in the 1st and 2nd semesters who have secured a letter grade of 'F' or 'Ab' in any of the courses can avail two immediate consecutive chances to reappear for 23 examination, course wise, provided the candidate has applied for the same and paid the required fee. Candidate in the 3rd semester who has secured letter grade of 'F' or 'Ab' in any of the courses can reappear for exams course-wise in the 3rd semester supplementary examination, which will be conducted immediately after the completion of End Semester Examination of Fourth semester, provided the candidate has applied for the same and paid the required fee (fee for supplementary examination of any course shall be full semester examination fee irrespective of number of courses involved). Candidates who secured the grade of only 'F' or 'Ab' in a course in the 4th semester examination can re-appear course wise, along with the immediate lower batch. Candidates who secured the grade of only 'F' or 'Ab' in a course in the 3rd/4thsemester examinations will be given two additional chances for course-wise reappearance even after the completion of the programme; but it has to be done within a period of two years after the completion. In such cases a candidate has to apply for the same as a supplementary exam and pay the required fee (Fee for supplementary examination of any course shall be full semester examination fee irrespective of number of courses involved). (As per the M G University CSS regulations amended from time to time)

MAHATMA GANDHI UNIVERSITY

SCHOOL OF ENERGY MATERIALS

PROGRAMME	M.Tech Energy Science and Technology
DURATION	2 years (2021 Admission Onwards)
Total credits required:	80 (for 4 semesters)
	[Core: 64; Elective: 16]

- * The student has to secure minimum of 24 credits [12 Credits (Core) + 3 Credits (Practical) + 6 Credits (Elective) + 3 credits (Viva)].
- * The student has to secure minimum of 24 credits [9 Credits (Core) + 3Credits (Practical) + 10 Credits (Elective) + 2 Credits (Minor project & Viva)]

* The student has to secure minimum of 32 credits for semester III and IV.

Program Specific Outcomes : (PSOs): At the completion of the M.Tech Energy Science and Technology program, the students from school of Energy Materials will be able to:

PSO	Expected outcome
1	Provide a strong foundation in Energy science and technology that
	emphasizes scientific reasoning and analytical problem solving.
2	Provide students with the skills required to succeed in M Tech., also enrich
	the students with a basic skill to perform in industry related to
	Energy
3	Promote research interest in students and enable them towards planning and
	execution of research in frontier areas of Energy storage conversion etc
4	Expose the students to a level of experimental techniques using modern
	instrumentation.
5	Demonstrate teamwork, communication, Time management and leadership
	skills across multicultural contexts
6	Acquire the ability to synthesize and characterize compounds using
•	sophisticated instrumental techniques and related soft-wares, for the in-
	depth characterization of energy materials
-	1 05
7	Develop solid knowledge, understanding and expertise in the domain of
	energy materials.

Course Code		Hours/Week			Credits	Total
Course Code	Course	L	Т	Р		credit
	Core Courses			1		
EMM20C01 Energy Science and Technology		2	2	-	3	-12
EMM20C02	Fundamentals of	2	2	-	3	_
	thermodynamics					
EMM20C03	Material Characterization Techniques	2	2	-	3	
EMM20C04	Basics of Nanoscience and Technology	2	2	-	3	
	Elective Course	S	·		·	
EMM20E01	Computational studies of energy	2	2	-	4	6
	materials					
EMM20E02	Polymers and Nanocomposites	2	2	-	4	-
EMM20E03	Nano photonics	2	2	-	4	
EMM20E04	Nano sensors and Nanodevices	2	2	-	2	
EMM20E05	Research Methodology	2	2	-	2	
	Laboratory Cou	irses		•		
EMM20C05	Lab1-Synthesis and	40	60	-	3	3
	Characterization of Advanced					
	Materials for Energy					
	Applications					
	Viva Voce	<u> </u>	L	I	1	
EMM20C06	Comprehensive Viva voce	40	60	-	3	3

Out of the total credits, a student has to secure minimum of 24 credits [12 Credits (Core) + 3 Credits(Practical) + 6 Credits (Elective) + 3 credits (Viva)]

Course Code	Course	Hours/Week		Credits	Total credits	
		L	Т	Р		
	Core Courses					+
EMM20C07	Nuclear Energy Technology	2	2	-	3	
EMM20C08	Bio - Energy Technology	2	2	2	3	
EMM20C09 Materials and Devices for Energy Applications		2	2	-	3	9
	Elective Courses		•			
EMM20E06	Energy Efficient Lighting and Displays	2	-	-	4	10
EMM20E07	Photovoltaic Techniques	2	-	-	4	
EMM20E08	Semiconductor Nanostructures for Optoelectronics	2	-	-	2	_
EMM20E09	Metals, Ceramics and Composite	2	_		4	-
	Materials for Energy Applications					
EMM20E10	Statistical Mechanics	2	-	-	2	-
	Laboratory Course	es	ł	·		
EMM20C10	Development of energy storage devices using Nanocomposites	-	-	6	3	3
	Viva Voce	1	I	1	I	1
EMM20C11	Minor Project & Viva Voce	-	-	6	2	2

Out of the total credits, a student has to secure minimum of 24 credits [9 Credits (Core) + 3Credits (Practical) + 10 Credits (Elective) + 2 Credits (Minor project & Viva)]

Semester III

Code	Subject	Credits
EMM20C12	Project Work - Phase I	16
	Total	16

SEMESTER IV

Code	Subject	Credits
EMM20C13	Comprehensive Viva Voce	4
EMM20C14	Project Work - Phase II	12
	Total	16

➢ Total Min. Marks for the M.Tech. − 2100

> Total Min. credits for the M.Tech. – 80

PROJECT SPECIFIC OUT COME M.TECH COURSE IN ENERGY SCIENCE AND TRCHNOLOGY

SEMSETER 1

Core Courses

CANDHI CA	MAHATMA GANDHI UNIVERSITY
मिताया अमृतमञ्जूते	EMM20C01 Energy Science and Technology
School Name	School of Energy Materials
Programme	M. Tech. in Energy Science and Technology
Course Name	Energy Science and Technology
Type of Course	CORE
Credit Value	3
Course Code	EMM20C01

Course Summary & Justification	Efficient energy conversion techniques are vital to our existence. This paper deals with modern technologies for energy conversion strategies and with the scientific principles underlying these technologies. Further, this curriculum is designed to allow students from a science, engineering, or other backgrounds with relevant experience, to gain the scientific knowledge needed to contribute to the energy sector. This can be through industry, business, academia, government policy or media communication. Students will examine the fundamental and applied science of how energy resources could be diversified from conventional polluting sources (e.g. CO ₂ , NO _x , SMOG) to renewable sources, where the sustainability of both the energy source and the conversion technology is presently unknown. The biggest benefit that student experience is the chance to significantly improve the world. Energy science professionals are able to increase the quality of life for millions of people and create the foundations for modern society. Whether you help a growing community expand or play a part in the energy systems of the future, this is a very fulfilling career choice.					
Semester	Ι					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
		40	40	0	40	120
Pre-requisite	Deep knowledge on solar energy, fuel cell, photovoltaic, and renewable energy					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Possess sophisticated comprehension of the sources, utilisation technologies, storage and distribution modes of energy that presently power cities, buildings, transportation and consumer devices.	U	4,5
2	Hypothesise, using fundamental science, how alternative energy sources and technologies may disrupt conventional energy utilisation behaviours.	U, A, An	1,4, 7
3	Outline the impact of energy utilisation on the environment at local and global levels	U, An	5,7
4	Quantify the scale of local and global energy utilisation, contrast this to the geographical location of the energy source and understand how these factors relate to the economics of energy markets.	U, An, E	2,3
5	Use knowledge of scientific and technological challenges posed by distributed electricity/power generation with computer simulation to understand electricity distribution networks.	U, A, An	3,4,5
6	Apply science underlying conventional and sustainable energy sources including nuclear, fossil, wind, solar, biomass and biofuels to propose solutions to the clean and sustainable energy problem.	U, A, An, E, C	1,2,5
7	Understand the physical and chemical factors defining the carbon cycle and be able to relate these to global climate change, and to the readiness of carbon capture and storage technologies.	R, U, An	1,7
8	Describe how essential and consumer technologies rely on critical raw materials and have knowledge of the global impact of their extraction, refining, substitution and recovery.	U, A, An	2,3,4
9	Create and communicate original knowledge of Energy Science by directed independent research through a combination of experimental, computational and analytical means.	U, A, C, An, E	1,4,5,7
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

COURSE CONTENT

Module	Module Content	Hrs	CO.
No:			No.
Module	Basics of Solar Energy: Energy and development, Units and	10	1,2,3
1	measurements, Solar spectrum, Electromagnetic spectrum. Measurement of solar radiation, Pyranometer, Pyrheliometer, Sunshine recorder. Solar time Local apparent time (LAT), equation of time (E), Solar radiation geometry- Earth Sun angles, Solar angles. Calculation of angle of incidence - Surface facing due south, horizontal, inclined surface and vertical surface. Solar day length, Sun	Hrs.	

	path diagram, Shadow determination. Estimation of Sunshine hours at different places in India. Calculation of total solar radiation on horizontal and tilted surfaces. Prediction of solar radiation availability, capturing solar radiation, physical principles of collection, types, liquid flat plate collectors, construction details, performance analysis, concentrating collection, flat plate collectors with plane reflectors, cylindrical parabolic collectors, Orientation and tracking.		
Module 2	Basics of Energy Conversion: Energy Conversion routes, Direct and Indirect way of Energy Conversion, Principles of heat and mass transfer, Fluid statics and dynamics, Electricity generation and distribution. Approach and modem techniques, Benefits, Trend, Energy conservation technology (Thermal Energy), Energy conservation in Energy Intensive Industries, collection, Limitation and heat and its potential applications, Waste heat survey and measurements Data collection, Limitation and heat affecting factors, Heat recovery equipment and systems, Heat Exchangers, Incinerators Regenerators and Recuperates. Need and importance of Energy storage in conventional and non-conventional Energy systems. Technical aspects (Measurements, Quantify), Various forms of Energy storage: thermal, chemical Mechanical, Electrical and Nuclear	15 Hrs.	4,5,6,7

Module	Introduction to energy sources: Conventional and Non-Conventional Energy, Sources of Non-conventional energy, Historical, Economic	15	8,9
3	and Environmental Perspective, Need of Non-conventional Energy Sources, Types of Non-conventional Energy Sources, Global and	Hrs.	
	National scenario, Basics of Nonconventional Energy Sources, their distribution and limitations.		
	Hydroelectric power : Types of hydropower plants and schemes, hydrology: runoff studies, flood estimation studies, assessment of hydropower potential of a basin, storage and pondage, load studies, elements of hydropower plants and their hydraulic design: dams, inteless conversions sustern times of power house, hydropolic turbines		
	intakes, conveyance system, types of power house, hydraulic turbines and pumps, Components and design of hydraulic turbines, Standardization and selection of turbine, Components and design of hydraulic Pumps, Hydropower scenario; Global and Indian perspective, Policies, Environmental concerns, Sub classification of		
	Hydropower projects, Conceptualization, Techno-commercial studies, Investigation & Planning, Design Principles, Project Management, Operational issues, Test cases of Hydropower Projects Wind Energy: Wind turbines, aerodynamics, types of turbines wind		
	energy conversion system, Wind turbine generator types. Advantages and disadvantages		
	Tidal: Principle, power calculation, Tidal modes of operation, Thermal power plant: Types of thermal power turbines, Gas		
	turbines; Open and closed cycles, constant pressure and constant volume cycles, cycles with inter cooling, reheating and heat exchanger, compressor and turbine efficiencies, pressure losses,		
	performance characteristics of various cycles, practical problems. Jet Propulsion: Calculation of thrust, Power, speed and efficiency, turbo - jet and turbo propulsion systems. Compressors, Combustion		
	Systems, Steam turbines; Principle and working, type of turbines, stage to blade, speed ratio for optimum efficiency, diagram efficiency, steam s performance. Energy losses in steam turbine, turbine		
	performance at various loads and governing of steam turbines. Constructional details and description of steam turbine, Thermal power scenario; Global and Indian perspective, Policies,		
	Environmental concerns, Sub classification, Techno-commercial studies, Investigation & Planning, Design Principles, Project Management, Operational issues, Test cases.		
	Nuclear Energy: Introduction to Nuclear Energy, Nuclear power scenario; Global and Indian		
Module 4	Photo-voltaic cell – characteristics- cell arrays-power electric circuits for output of solar panels-choppers-inverters-batteries-charge regulators, Construction concepts. PV cell technologies 1st, 2nd	10 Hrs.	10
	and3rd generations, Electrical characteristics, PV module and array, PV system components and design		
	Solar thermal power: Solar radiation characteristics, flat plate collector, Tubular Collector, solar air collector, solar concentrator.		

Module		
5	production processes: Biomethane, Biohydrogen, Alcoholic Hrs.	
fermentation, Biodiesel, Microbial Fuel Cell, Biomass based steam		
	power plant, combined cycle powerplant, cogeneration plant	

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library			
Approach	work, independent studies, Presentation by individual student			
Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	Surprise test			
	Internal Test – Objective and descriptive answer type			
	 Submitting assignments 			
	Seminar Presentation – select a topic of choice in the concerned area and present in the seminar			
	B. Semester End examination			

REFERENCES

- 1. Renewable energy resources. J. Twidell and T. Weir, Taylor and Francis.
- 2. Renewable and efficient electric power systems. G.M. Masters, John Wiley and Sons.
- 3. Renewable energy sources and Emerging technology. D.P. Kothari, K.C.Singal and R. Ranjan, Prantice Hall.
- 4. Renewable energy engineering and Technology. Ed. VV N Kishore, TERI.
- 5. Biofuels Engineering Process Technology by Caye M. Drapcheo, N P Nhuan, T.H Walkar
- 6. Biohydrogen production: Fundamentals and Technology Advantages by D. Das, N. Khanna, C. Nag
- John F. Walker & Jenkins. N., "Wind Energy Technology", John Wiley and sons, Chichester, 1997.
 17
- 8. Van Overstraeton. R. J. and Mertens R. P., "Physics Technology and use of Photovoltaic" Adam Higher, Bristol,1996.
- 9. Freris LL, "Wind Energy Conversion Systems", Prentice Hall, U.K., 1990.
- 10. Imamura MS. et.al "Photovoltaic System Technology. European handbook" H. S. Stephen &A ssociates.1992
- D. Yogi Goswami, Frank Kreith, Jan. F. Kreider, "Principles of Solar Engineering", 2nd Edition, Taylor & Francis, 2000, Indian reprint, 2003
- 12. Edward E. Anderson, "Fundamentals for solar energy conversion", Addison Wesley Publ. Co., 1983.

- 13. Duffie J. A and Beckman, W.A., "Solar Engineering of Thermal Process", John Wiley, 1991.
- 14. G. N. Tiwari and M. K. Ghosal, "Fundamentals of Renewable energy Sources", Narosa Publishing House, New Delhi,2007
- 15. Energy Studies, Second Edition, by W. Shepherd and D. W. Shepherd, Imperial College Press, London, 2004.
- 16. S. P. Sukhatme, Solar Energy Principles of thermal collection and storage, second edition, Tata McGraw-Hil, New Delhi,1996
- 17. M.S. Sodha, N. K. Bansal, P.K. Bansal, A. Kumar and M. A. S. Malik, Solar Passive
- M. A. S. Malik, G. N. Tiwari, A. Kumar and M.S. Sodha, Solar Distillation. Pergamon Press, New York, 1982.
 K. R. Rao - Energy and Power Generation Handbook: Established and Emerging Technologies, American Society of Mechanical Engineers, U.S. (2011)
- 19. Steven W Blume, Electric Power Systems Basics, IEEE Press 2007
- 20. Francis Vanek, Louis Albright, Largus Angenent, Energy Systems Engineering: Evaluation and Implementation, 2nd edition, McGraw-Hill Professional, (2012)

	MAHATMA GANDHI UNIVERSITY
मिलाया अमृतमन्द्रे	EMM20C02 Fundamentals of thermodynamics
School Name	School of Energy Materials
Programme	M. Tech. in Energy Science and Technology
Course Name	Energy Science and Technology
Type of Course	CORE
Credit Value	3
Course Code	EMM20C02

Course	The "fundamentals of	thermodyr	namics" cour	rse explores t	he concept	ts of heat and
Summary &	how it can be conver	how it can be converted to power, and covers all aspects of energy and energy				
Justification	transfer including power production, refrigeration and property relation of					
	substances. This course aims to impart basic knowledge on laws of					
	thermodynamics, ent	thermodynamics, entropy, energy changes, energy analysis. To familiarize				
	different types of cycl	e analysis a	and optimiza	tion, thermo	lynamic op	ptimization of
	irreversible systems. T	o give the o	concept of Fi	nite time ther	modynam	ics principles.
	Understanding the rel					
	and work. This cour	rse is desi	igned at pr	oviding stud	lents with	concepts of
	thermodynamics, entro	opy, energy	changes, en	ergy analysis	. In depth l	knowledge on
	thermodynamic opt	imization,	thermody	namic prin	ciples.	Concept on
	thermodynamic reactive system, properties of gas mixtures, changes in entropy.					
	Knowledge on laws of thermodynamics, energy analysis of industrial systems,					
	cycle analysis and optimization.					
Semester	Ī					
Total Student						Total
Learning Time	Learning Approach	Lecture	Tutorial	Practical	Others	Learning
(SLT)						Hours
		40	40	0	40	120
Pre-requisite	Basic knowledge of thermodynamics					
		•				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the basic concepts of thermodynamic such as temperature, pressure, system, properties, process, state, cycles and equilibrium	U	1,2,5,7
2	To conduct experiments regarding the measurement and calibration of temperatures and pressures in groups.	U, A, An	3,4,5
3	To identify the properties of substances on property diagrams and obtain the data from property tables	U, An	1,5,7
4	Ability to define energy transfer through mass, heat and work for closed and control volume systems.	U, An, E	2,3,4
5	Ability to apply the first Law of Thermodynamics on closed and control volume systems.	U, A, An	5,7
6	Ability to apply Second Law of Thermodynamics and entropy concepts in analysing the thermal efficiencies of heat engines such as Carnot and Rankine cycles and the coefficients of performance for refrigerators.	U, A, An, E, C	1,3,6,7
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

COURSE CONTENT

Module	Module Content	Hrs	CO.
No:			No.
<u>Module</u> <u>1</u>	Laws of thermodynamics, entropy, entropy balance for closed and open systems. Energy: Concept of reversible work & irreversibility, second law efficiency; Energy change of a system: closed & open systems, energy transfer by heat, work and mass, energy destruction, energy balance in closed & open systems. Energy analysis of industrial systems, power systems and refrigeration systems.	15 Hrs.	1,2,3
Module 2	Cycle analysis and optimization: Regenerative reheat, Rankine cycle and Brayton cycle, combined cycle power plants, multi-stage refrigeration systems.	15 Hrs.	4,5,6,7
Module <u>3</u>	Thermodynamic optimization of irreversible systems: Finite time thermodynamics principles, optimization studies of various thermal systems, Minimization of entropy generation principle. Thermodynamics of Reactive System: Conditions of equilibrium of a multiphase, multicomponent system; Second law applied to a reactive system; Condition for reaction equilibrium.	15 Hrs.	8,9
<u>Module</u> <u>4</u>	Properties of Gas Mixtures: Equation of state and properties of ideal gas mixtures; Change in entropy on mixing; Partial molal properties for non-ideal gas mixtures; Equations of state.	15 Hrs.	10

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library			
Approach	work, independent studies, Presentation by individual student			
Assessment	Mode of Assessment			
Types	C. Continuous Internal Assessment (CIA)			
	Surprise test			
	Internal Test – Objective and descriptive answer type			
	Submitting assignments			
	Seminar Presentation – select a topic of choice in the concerned area and present in the seminar			
	D. Semester End examination			

REFERENCES

- 1. Nag. P.K., " Engineering Thermodynamics ", Tata McGraw-Hill Publishing Co., Ltd., 1994
- 2. M. Achuthan, 'Engineering Thermodynamics', Prentice-Hall of India, Second Edition, New Delhi, 2009.

- 3. M. J. Moran and H. N. Shapiro, 'Fundamentals of Engineering Thermodynamics', Fourth Edition, Wiley, New York, 2000.
- 4. R. E. Sonntag, C. Borgnakke, and G. J. Van Wylen, 'Fundamentals of Thermodynamics', Sixth Edition, Wiley, Singapore, 2003.
- 5. F. W. Sears and G. L. Salinger, 'Thermodynamics, Kinetic Theory and Statistical Thermodynamics', Addison-Wesley/Narosa, New Delhi, 1975.
- 6. M. W. Zemansky and R. H. Dittman, 'Heat and Thermodynamics', Seventh Edition, McGraw-Hill, New York, 1981.

	MAHATMA GANDHI UNIVERSITY
विद्यया अमृतमञ्जूषे	EMM20C03 MATERIAL CHARACTERISATION TECHNIQUES

SchoolName	School of Energy Materia	als				
Programme	M.Tech					
Course Name	MATERIAL CHARACT	TERISATI	ON TECH	INIQUES		
Course Credit	3					
Type of Course	CORE					
Course Code	EMM20C03					
Course Summary & Justification	This course aims to impart basic knowledge on spectroscopic methods, different types of spectroscopies, microscopic techniques. To introduce the basic concepts on thermal analysis, theory, instrumentation and applications. To familiarize different types of nondestructive testing. To give the concept of analyzing the material properties by different microscopic techniques. Understanding the concept of various material characterization methods and also is important as it helps to analyze various materials. This course is designed at providing students with concepts of material characterization techniques, thermal analysis and nondestructive testing. In depth knowledge on spectroscopic methods, electron spectroscopies, optical microscopy, electron microscopy. Concept on thermal analysis, basic theory, instrumentation and applications. Knowledge on material's structure and properties.					
Semester Total Studen tLearning Time	I Learning Approach	Lecture	Tutoria	Practical	Others	Total Learnin
(SLT)	Authoritic losmina	40	1	0	40	g Hours 120
	Authentic learning Collaborative learning Independent learning	40	40	U	40	120
Pre-requisite	Basics of laws and princip of a system.	les of thern	nodynamic	cs,entropy a	and energy	y changes

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.	
1	Understand the concept of spectroscopic methods, thermal analysis, instrumentation and applications.	U, A	1,2,6	
2	To learn about various electron spectroscopies.	U, A	1,2,4	
3	Understand the concept of characterizing material properties by using different microscopic methods.	R, An, E	1,6	
4	To impart knowledge on analyzing materials structure and properties.	E,S,An	1,4	
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

COURSE CONTENT

Module No:	Module Content	Hrs	CO. No.
1	Spectroscopic methods: UV-visible spectroscopy- Beer's law, Instrumentation, Quantitative analysis; Vibrational spectroscopy- Raman and Infrared, Principles of vibrational spectroscopy, Photoluminescence Spectroscopy, Electrochemical Impedance Spectroscopy, Polarized neutron Reflectivity, Infrared and Raman activity, Fourier transform infrared spectroscopy, instrumentation, X-ray diffraction (XRD), Raman spectroscopy, Micro Raman, Applications	15	1
2	Electron spectroscopies: X-ray photoelectron spectroscopy (XPS), Ultra-violet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), Atomic model and electron configuration, Principles of XPS and AES, Chemical shift, Depth profiling, Instrumentation, Applications	10	2
3	Optical Microscopy: Image formation, Resolution, Aberrations, Imaging modes, Specimen preparation, Confocal microscopy	5	3,4
4	Electron microscopy: Scanning electron microscopy (SEM), Field Emission Scanning Electron Microscopy, Instrumentation, Electron beam-specimen interaction, Specimen preparation, Energy dispersive spectroscopy (EDS) in electron microscopes; Transmission electron microscopy (TEM) - Basics of TEM, Electron sources, Preparation of samples for electron microscopic studies, Image modes, Image contrast.	15	3,4
5	Scanning Probe Microscopies: Scanning tunneling microscope (STM) and Atomic force microscope (AFM) - Working principles, working modes, Image artifacts	5	3,4
6	Thermal analysis : Thermo gravimetric analysis (TGA), Differential thermal analysis (DTA), Differential scanning calorimetry (DSC), Dynamic mechanical analysis (DMA), Thermomechanical analysis (TMA) and Dynamic mechanical thermal analysis (DMTA), Basic theory, Instrumentation and applications, Other characterization methods: Universal Testing Machine, Vibrating sample Magnetometer, Vector network Analyzer, vibrating Sample Magnetometer, Brunauer-Emmett Teller surface areas, Zeta sizer	15	1

7	Non-destructive testing: Radiography, Ultrasonic, Acoustic emission,	5	4
	Thermography, Holography, Basic principles, Applications in airframe		
	and rocketry.		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library work, independent studies, Presentation by individual student	
Assessment	Mode of Assessment	
Types	A. Continuous Internal Assessment (CIA)	
	• Surprise test	
	• Internal Test – Objective and descriptive answer type	
	 Submitting assignments 	
	• Seminar Presentation – select a topic of choice in the concerned	
	area and present in the seminar	
	B. Semester End examination	

REFERENCES

- 01. Y. Leng, Materials Characterisation: Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons (Asia), 2008.
- 02. S. Zhang, Lin Li, A. Kumar, Materials Characterisation Techniques, CRC press, 2008.
- 03. D.A. Skoog, F.J. Holler, S. R. Crouch, Instrumental Analysis, Cengage Learning, 2007
- 04. J.C. Vickerman, I. Gilmore, Surface Analysis: The Principal Techniques, 2nd ed., John Wiley & Sons, Inc.2009.
- 05. W. W. Wendlandt, Thermal Methods of Analysis, John Wiley, 1974.
- 06. B. Raj, T. Jayakumar, M. Thavasimuthu, Practical Non-Destructive Testing, 2nd ed., Narosa Publishing House, 2002.
- 07. R.M. Silverstein, Spectrometric identification of organic compounds, 7th ed., John Wiley and Sons, 2007.
- 08. C.R. Brundle, C.A. Evans, S. Wilson, Encyclopedia of Materials Characterisation, Butterworth-Heineman, 1992.
- 09. S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980.
- 10. W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of NanoScience, Engg. and Technology, CRC Press, 2002.
- 11. K. Barriham, D.D. Vvedensky, Low dimensional semiconductor structures: fundamental and device applications, Cambridge University Press, 2001.
- 12. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.
- 13. J. George, Preparation of Thin Films, Marcel Dekker, Inc., New York.2005.
- 14. B. D. Cullity, "Elements of X-ray Diffraction", 4th Edition, Addison Wiley, 1978.
- 15. M. H. Loretto, "Electron Beam Analysis of Materials", Chapman and Hall, 1984.

	MAHATMA GANDHI UNIVERSITY
--	---------------------------

Pre-requisite	Basics of laws and princip of a system.	bles of therr	nodynami	cs,entropy a	ind energ	y changes
		40	40	0	40	120
Total Learning (SLT)Student Time	Learning Approach	Lecture	Tutoril	Practical	Othes	Total Learnin g Hours
Semester	I					
Course Summary & Justification	To provide seamless education through the pioneering use of nanotechnology, in partnership with industry and society with a view to promote research, discovery and entrepreneurship and to prepare its students to be responsible citizens of the world and the leaders of technology and techno-innovation of the 21st Century by developing in them the desirable knowledge, skill and attitudes base for the world of work and by instilling in them a culture for seamlessness in all facets of life. This course aims to Understand various chemical and physical methods for the synthesis of diverse types of nanomaterials (0D, 1D and 2D) It will give decipher information on the specific details of both bottom up and top-down synthesis. Gather information on the different types of nanomaterials and their potential applications. The course will provide exposure in various specialization of Nanotechnology.					
Course Code	EMM20C04					
Type of Course	CORE					
Course Credit	3					
Course Name	BASICS OF NANOSCII	ENCE ANI) TECHN	OLOGY		
Programme	M. Tech in Energy Scien	ce and Tec	chnology			
SchoolName	School of Energy Materi	als				
Para a signature	EMM20C04 BASICS OI	F NANOS(CIENCE A	AND TECH	INOLO	GY

COURSE CONTENT

Module	Module Content	Hrs	CO.
No:			No.

1	General introduction and theory of nanomaterials-	18	1,2
	History of nanomaterials; Size and shape dependant properties and their uniqueness; Energy at nanoscale - surface characteristics and electrostatic and steric stabilization - Quantum confinement - zero dimensional, one dimensional and two dimensional nanostructures Synthesis of nanomaterials- top down approach, bottom up approach, Physical Methods; Vacuum Evaporation, Electron beam evaporation Sputtering, 21 Cathodic Arc Deposition, Chemical Vapour Deposition, Atomic Layer Deposition, Pulsed Laser Deposition, Molecular Beam Epitaxy, Lithography and their types, mechanical milling, Chemical Methods; Sol- Gel technique, self-assembly, colloidal method, hydro-thermal method, coprecipitation method, solid state synthesis, microwave method, micro- emulsion method. chemical vapour deposition (CVD) and wet chemical methods for the synthesis of zero dimensional one dimensional and two- dimensional nanostructures-metal nanoparticles, quantum dots, nanoclusters, nanowires and rods, thin films		
2	Functional nanomaterials	15	2,3
	Semiconducting Nanostructures: Metal oxide nanostructures: Background, Synthesis, Properties and Applications Nano chalcogenides: Background, Synthesis, Properties and Applications Organic Semiconductor Nanostructures: Background, Synthesis, Properties and Applications Carbon Nanomaterials: Introduction to Carbon allotropes and Carbon nanomaterials Fullerenes: Background, Synthesis, Properties and Applications CNTs (SWNTs and MWCNTs,): Background, Synthesis, Properties and Applications Nano-diamonds: Background, Synthesis, Properties and Applications Graphene: Background, Synthesis, Properties and Applications Carbon nano-fibers and Carbon nano-yarns: Background, Synthesis, Properties and Applications		
3	Applications of nanomaterials-	12	3,4,6
	Application of nanomaterials in healthcare, biosensor, coatings environment, catalysis, agriculture, automotive, sensors, electronics, photonics, information technology, quantum computing, energy and aerospace sectors		
4	Nanotechnology	15	5,7,8
	Environmental and health effects Environmental pollutants in air, water, soil, hazardous and toxic wastes, application of nanotechnology in remediation of pollution. The challenge to occupational health and hygiene, toxicity of nanoparticles, effects of inhaled nanosized particles, skin exposure to nanoparticles, impact of CNTs on respiratory systems, hazards and risks of exposure to nanoparticles, monitoring nanoparticles in work place and sensors.		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the basic concept of nanoscience and nanotechnology.	U, R	1,2
2	To synthesize nanomaterials using different fabrication process such as Vacuum Evaporation, Electron beam evaporation Sputtering, Cathodic Arc Deposition, Chemical Vapour Deposition, Atomic Layer Deposition, Pulsed Laser Deposition and Molecular Beam Epitaxy.	U, A, C	2,4,6
3	Understand the background, synthesis, properties and applications of organic semiconductor nanostructures.	U, An	3,4
4	Utilization and application of nanomaterials in various sectors and industries like healthcare, agriculture, automotive, electronics, photonics, information technology, quantum computing, energy and aerospace.	A, S	3,6
5	Understand the environmental safety aspect of nanotechnology.	U, R	3,5
6	To foster the creation of new and relevant technologies and to transfer them to industry for effective utilization.	I, R	4,5
7	To participate in the planning and solving of engineering and managerial problems of relevance to global industry and to society at large by conducting basic and applied research in the areas of technologies.	A, S	5,6
8	To impart awareness on significance of nanomaterials in the future technological applications. The programme provides adequate exposure to the students for pursuing higher education in the field of nanotechnology and other job opportunities in academia and industry.	E, Ap.	3,7

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library work, independent studies, Presentation by individual student.	
Assessment	Mode of Assessment	
Types	C. Continuous Internal Assessment (CIA)	
	• Surprise test	
	• Internal Test – Objective and descriptive answer type	
	 Submitting assignments 	

• Seminar Presentation – select a topic of choice in the concerned
area and present in the seminar
D. Semester End examination

REFERENCES

1. A Handbook of Nanotechnology, U. Kumar, AGROBIOS

- 2. Springer Handbook of Nanotechnology, B. Bhooshan, Springer
- 3. Advances in Nanomaterials, Zishan Husain Khan & M. Husain, Springer22
- 4. Recent Trends in Nanomaterials: Synthesis and Properties (Advanced Structured Materials), Zishan Husain Khan, Springer
- 5. Nanomaterials and Their Applications, Zishan Husain Khan, Springer

6. K. J. Klabunde and R.M. Richards (Eds.), Nanoscale Materials in Chemistry, 2nd Edn., John Wiley & Sons, 2009.

- 7. T. Pradeep, Nano: The Essentials, McGraw-Hill (India) Pvt Limited, 2008.
- 8. Bharat Bhushan, (Ed.), Handbook of Nanotechnology, Springer, 2007.
- 9. Carl C. Koch (Ed.), Nanostructured Materials: Processing Properties and

Applications, William Andrew Inc., 2007.

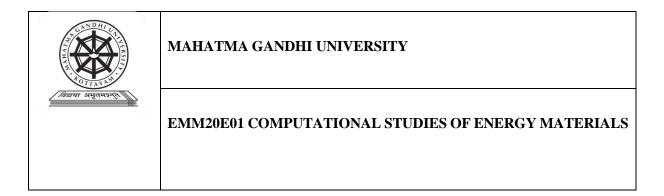
10. Anke Krueger, Carbon Materials and Nanotechnology, Wiley-VCH Verlag GmbH & Co.KGaA, 2010.

11. Cao, G., Nanostructures and Nanomaterials Synthesis, Properties, and Applications, Imperial College Press, 2004.

12. Wang, Z. L., (Ed.), Characterization of nanophase materials, Wiley-VCH Verlag GmbH,2000.

13. Garcia-Martinez, J., (Ed.), Nanotechnology for the Energy Challenge. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.

14. Goddard III W.A., et. al., (Ed.), Handbook of Nanoscience, Engineering, and Technology, Taylor & Francis Group, 2007.


15. B.P.S. Chauhan (Ed), Hybrid Nanomaterials: Synthesis, Characterization, and Applications, Wiley-VCH Verlag GmbH, 2011.

16. J. Lei and F. Lin, Bioinspired Intelligent Nanostructured Interfacial Materials, World Scientific Publishing Company, 2010.

17. Challa S. S. R. Kumar (Ed.) Biomimetic and Bioinspired Nanomaterials, Wiley-VCH, Verlag GmbH, 2010.

18. Chemistry of nanomaterials, Ed, C.N.R Rao, A, MULLER, A.K. CHEETHAM, 2004, WILE-VCH VERLAG, WEINHEIM, VOL 1&2

Elective Courses

SchoolName	School of Energy Materia	als				
Programme	M.Tech in Energy Science and Technology					
Course Name	COMPUTATIONAL STUDIES OF ENERGY MATERIALS					
Course Credit	4					
Type of Course	ELECTIVE					
Course Code	EMM20E01					
Course Summary	This course aims to impart the basic knowledge on the computational modelling					
& Justification	techniques in the field of materials for energy technologies including hydrogen					
	production and storage, energy storage and conversion, and light absorption					
	and emission. To familiar	ize the cur	rent possił	pilities and	limitation	ns of each
	computational modelling	techniques,	, as well	as the crite	eria for s	electing a
	particular technique and co	ombining di	fferent tec	hniques. To	introduc	e the basic
	knowledge on different	optimizatio	n method	s used in	the com	putational
	studies. Understanding the concept of computational modelling techniques is					
	very important as it helps to study simple to complex chemical processes,					
	complex structures and their reactivity. This course is designed at providing					
	students with the basic knowledge on different computational modelling					
	methods for studying materials on energy technologies including hydrogen					
	production and storage, energy storage and conversion, and light absorption					
	and emission. And it provided an in-depth knowledge on computational					
	modelling techniques for phase transition under confinement. In addition to					
	this, it helps to understand Density Functional Calculations, Thermal Systems					
	Modelling, Optimization N	Methods and	d Electrica	l Energy Sy	ystems M	odelling.
Semester	Ι					
Total Studen						Total
tLearning Time	Learning Approach	Lecture	Tutoria	Practical	Others	Learnin
(SLT)			1			g Hours
	Authentic learning	40	40	0	40	120
	Collaborative learning					
	Independent learning					
Pre-requisite	Basics of laws and principles of thermodynamics, entropy and energy changes					
	of a system.					

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand the concept of computational modelling techniques	U, R	1,2,3
	in the field of materials for energy technologies		
2	Understand computations of Phase Transition under	U, S, I	1, 5,7
	Confinement		
3	Understand different optimization methods	U, R	1,3,4
4	To impart knowledge on density Functional Calculations and	E, Ap, S	1,7
	Electrical Energy Systems Modelling:		
5	Understanding of Density Functional Calculations in Carbon	U, R, An	1,3,4,5
	Nanotubes		
6	To impart knowledge of different Optimization Methods	U, R, S	1,5,6,7
7	To understand concepts of Electrical Energy Systems	U, R, An	1,3
	Modelling		
8	Understand Developments and applications of computational	U,R,S	1,4,5
	modelling techniques in the field of materials		
*Remen	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),		
Interest	Interest (I) and Appreciation (Ap)		

COURSE CONTENT

Module	Module Content	Hours	CO.No.
No.			
1	General introduction Understanding current possibilities and limitations of each method, as well as the criteria for selecting a particular method and combining different methods. Becoming familiar with the theoretical, computational and application aspects of modelling. Solving a few selected real materials problems	7.5	1,2
2	Computer modelling methods for studying materials on a wide variety of length and time scales. Phase field methods, Background statistical mechanics, Quantum- level modelling, Molecular dynamics, Icing model, Cluster Variation Method, Monte Carlo techniques, Finite volume methods, discrete dislocation dynamics.	7.5	1,2,3

3	Applications of nanomaterials: Computations of PhaseTransition under Confinement; General Basis forpredicting physical properties of nanocrystals and largeclusters; Quantum Confined Systems & computationaltechniques, Computational Electrodynamics Methods;Large Scale Electronic Transport Calculations.	7.5	2,3,4
4	Density Functional Calculations in Carbon Nanotubes; Time Dependent Density Functional Theory; Computational Study of Nanotubes; Excited State Properties (GW, BSE); Computing Mechanical Properties and Modeling Growth; Computation Vs Experiment, Present Day Scenario: regarding computation in the field. COMSOL Multiphysics, MATLAB	7.5	4,5
5	Thermal Systems Modelling, Design and Simulation Methodology for Heat exchangers, refrigerators and air conditioners Steady state system simulation, Non-linear Systems: Modelling and Simulation, Dynamic System Simulation, Numerical Integration, Parametric Estimation.	7.5	1,4,5
6	Optimization Methods: Lagrange Multiplier, SearchTechniques, Geometric ProgrammingChemical Energy Systems Modelling, Non-isothermalChemical Reaction Systems, Heating and Cooling ofReactors, Ignition and Extinction Temperatures,Multiplicity and HotSpot Formation in Reactors, FossilFuel Pyrolysis and Combustion Models, AdiabaticCombustion Temperature, Thermogravimetric Analysis,Design of Petroleum Refinery Distillation HeatExchanger Network Analysis.	7.5	4,5,6
7	Electrical Energy Systems Modelling: Introduction to Electrical Systems and Electrical Elements, Lumped and	7.5	1,4,7

	Distributed Parameter Models, Laplace Transforms,		
	Transfer Functions, Electrical and Electro-mechanical		
	System Transfer Functions, Examples of Modelling and		
	Transfer Functions, State variables and the State-Space		
	Representation, Solving the equations of Time and Space		
	Domain, State Equation examples Controllability and		
	Observability.		
8	Developments and applications of computational modelling techniques in the field of materials for energy technologies including hydrogen production and storage, energy storage and conversion, and light absorption and emission.	7.5	7,8

Teaching and	Classroom Procedure (Mode of transaction)	
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library	
Approach	work, independent studies, Presentation by individual student	
Assessment	Mode of Assessment	
Types	E. Continuous Internal Assessment (CIA)	
	• Surprise test	
	• Internal Test – Objective and descriptive answer type	
	 Submitting assignments 	
	• Seminar Presentation – select a topic of choice in the concerned	
	area and present in the seminar	
	F. Semester End examination	

REFERENCES

01 .Handbook of Theoretical & Computational nanotechnology: -Michael Reith &Wolfram Schommers, 2006, aspbs

02. Nanocomputing: Computational Physics for Nanoscience&Nanotechnology: -Hso, James J.Y,2009, Pan Stanford publishing

03. Computational Nanoscience &nanotechnology: -Mathew Laudon, computational Publishers, 2001

04. Electronic properties of Carbon Nanotube, Jose Mauricio Marulanda, Chapter 14, Intech. Open science, 2011.

05. Information Theory, Inference and Learning Algorithms, David J. C. Mackay, Cambridge University Press, 2003.

06. Evaluating and improving the cluster variation method entropy functional for Ising alloys – A Review, Luiz G. Ferreira, C. Wolverton, Alex Zunger, The Journal of Chemical Physics, 1998, 108, 2912.

07. Matlab for Engineers, Holly Moore, Pearson publisher, 2015.

08. COMSOL for Engineers, M. Tabatabaian, Mercury Learning & Information, 2014

09. Holman, J. P. and Bhattacharyya, Souvik (2011), Heat Transfer. 10th Edition. McGraw Hill Education (India).

10. C. R. A. Catlow, Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. H. Smith, A. A Phil. Trans. R. Soc. A (2010)

11. Aris, Rutherford (1999). Mathematical Modeling: A Chemical Engineer's Perspective. Academic Press

12. Fogler, H. Scott (2008), Elements of Chemical Reaction Engineering. 4th Edition, PH

13. Bailey, J and Ollis, D. F. (2010), Biochemical Engineering Fundamentals, 2nd Edition, McGraw Hill Education (India)

14. Treybal, R (2012), Mass Transfer Operations, 3rd Edition, McGraw Hill Education (India

15. Gupta, S.K. (2012), Numerical Methods for Engineers, 3rd Edition, New Age International (P) Ltd.

16. F. Milano, Power System Modelling and Scripting, Springer, London, August 2010.8. OlleElgerd, ELECTRIC ENERGY SYSTEMS THEORY, McGraw Hill Education (India) Private Limited,2001

Rara sugaruarta	MAHATMA GANDHI UNIVERSITY
	POLYMERS AND NANOCOMPOSITES
School Name	School of Energy Materials
Programme	M.Tech in Energy Science and Technology
Course Name	Polymers and Nanocomposites
Type of Course	Elective
Credit Value	4
Course Code	EMM20E02

Course Summary & Justification	This course aims to impart basic knowledge on different polymerization process and techniques. To introduce the basic concepts on glass transition temperature, various measuring techniques, factors affecting glass transition temperature. To familiarize the molecular weight of polymers and specialty polymers. To give the concept of conducting polymers, discovery and its classification. Understanding the concept of polymer nanocomposites, different types of nanofillers, nanocomposites, and also the synthesis of nanocomposites and other metal matrix composites. The course deals with the study of the basic nature of different polymers and polymer composites and the manufacturing processes associated thereof. The classification of engineering materials and processing techniques, the structure and mechanical properties of plastics, thermoplastics and thermosets, the various processing techniques of polymers such as Extrusion, Injection molding, Thermoforming, Compression molding and Transfer molding have been explained with the relevant and specific examples. The fundamental concept and classification of composite materials, properties of composites and the primary as well as secondary processing methods of polymeric matrix composites have been							
	explained.	secondary processing of polymers and polymer composites has also been explained.						
Semester	Ι							
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours		
		40	40	0	40	120		
Pre-requisite	Basic knowledge of Chemistry (1st year level). Any discipline of mechanical engineering, production engineering, polymer technology, chemical engineering, chemistry and physics can complete the course.							

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Different kind of polymers and their properties.	U	2,7
2	Concept of Molecular Weight and distribution.	U, A, R	1,2,6,7
3	Variation of properties of polymer by crystallinity and glass transition temperature, process of polymer degradation.	U, R	1,2
4	Different techniques of polymerization of polymers.	U, R, A	2
5	Concept of conducting polymers	U, R, A	1,3,6
6	The student will able to understand various structure of polymers and their effect on different properties of polymers and polymer nanocomposite.	U, A, I	4
7	Will understand basic elements, operation and applications of various microscopy techniques such as SEM, TEM and XRD for analysis of surface and structure of plastic products.	U, R, S, I, An	2,4
8	Effect of variation in the quantities & type of curing agents, additives & curing condition on the properties of polymer composites	U, A, R, An	1,2,5
9	Upon completion of the course, the students will have the knowledge of formulation for manufacturing, properties and applications of variety of polymer composites	U, R, S, I, An, A	2,3
10	The candidate will get basic knowledge of the properties of polymer composites, the common application of such materials and the engineering principles including material selection, fundamental relations, analysis methods and manufacturing methods.	U, A, R, S, I, An C	1,2,3
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

Module No:	Module Content	Hrs	CO.		
			No.		
Module 1	Basic Aspects	10	1,6		
	Classification, Some basic definitions, Addition and	Hrs.			
	condensation polymerizations, and copolymerization,				
	Mechanism of free radical, cationic and anionic polymerizations,				
	Nomenclature, Tacticity, Glassy solids: Glass transition and melting temperatures and their determination by DSC - Factors affecting Tg, importance of Tg, relationship between Tm and Tg				
	and their control - Crystallinity in polymers: Degree of				
	crystallinity, factors affecting crystallinity				
	of polymers, effect of crystallinity on the properties of polymers.				

	Polymerization Techniques: Bulk, Solution, Suspension and		
	Emulsion polymerizations- Polymerization using metal catalysts		
	and surfactants.		
Module 2	Molecular weight of polymers	13	2, 6
	Number average, weight average and viscosity average molecular	Hrs.	
	weights of polymers - Determination of molecular weight of		
	polymers by GPC and viscometry methods. Specialty		
	polymers:Bio-polymers, Bio-degradable polymers, Fire retardant		
	/ Thermally stable polymers, Polymer electrolytes, Liquid armor		
	polymers and Liquid crystalline polymers.		
Module 3	Conducting Polymers	12	5,6
	Discovery, Structural characteristics and doping concept, Charge	Hrs.	
	carriers and conducting mechanism, Classification of conducting		
	polymers: Intrinsic and extrinsic conducting polymers, Chemical		
	and electrochemical methods of the synthesis of conducting		
	polymers, Applications of conducting polymers in corrosion		
	protection, sensors, electronic and		
	electrochemical energy devices.		
Module 4	Polymer Nanocomposites	15	6, 7, 8,
	Definition of nanocomposites, Nanofillers, Classification of	Hrs.	9, 10
	nanofillers, Synthesis and properties of nanofillers, Types of		
	nanocomposites, Synthesis of nanocomposites: Direct mixing,		
	solution mixing, In-situ polymerization, Polymer/ Metal oxide		
	nanocomposites, diblockcopolymer-basednanocomposites,		
	Polymer/CNTs and Polymer/Nanoclay based composites and		
	their properties and functional applications.		
Module 5	Other Kinds of Nanocomposites	10	1, 6, 9,
	Fractal based Glass, metal nanocomposites, Core-shell structured	Hrs.	10
	nanocomposites, Super hard nanocomposites, Self-cleaning		
	nanocomposites, Metal matrix nanocomposites: Metal with		
	nanoceramic fillers such as SiC, CeO2, TiO2, ZrO2 PTFE,		
	CNTs and their mechanical, corrosion resistance properties and		
	functional applications.		

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library
Approach	work, independent studies, Presentation by individual student
Assessment	Mode of Assessment
Types	E. Continuous Internal Assessment (CIA)
	 Surprise test Internal Test – Objective and descriptive answer type Submitting assignments Seminar Presentation – select a topic of choice in the concerned area and present in the seminar F. Semester End examination

1. Alfred Ruiden, Elements of Polymer Science and Engineering, Elsevier Science, 1998.

2. Bill Meyer, A Text Book of Polymer Chemistry, John Wiley & Sons, Singapore, 1994.

3. Gowariker and Viswanathan, Polymer Science, Wiley Eastern, 1986.

4. Nanostructured Conductive Polymers, Editor. Ali Eftekhari, Wiley, 2010.

5. Nanocomposites - Science and Technology - P. M. Ajayan, L.S. Schadler, P.

V. Braun, WileyVCH, 2004.

6. GeorgeOdian, Principles of Polymerization, John Wiley & Sons, 1933

7. Conducting polymers with micro or nano meter structure, Meixiang Wan, Springer, 2008.

8. Polymer-Clay Nanocomposites, T.J. Pinnayain, G.W.Beall, Wiley, New York, 2001.

9. Composite Materials, Deborah D.L.Chung, Springer, 2002.

XX	MAHATMA GANDHI UNIVERSITY				
Pacara Subuchan	Nano Photonics				
School Name	School of Energy Materials				
Programme	•				
Course Name	Nano Photonics				
Type of Course	Elective				
Credit Value	4				
Course Code	EMM20E03				

Course	This course shall introduce the basic principles, applications and latest advances in							
Summary &	the area of Nanophoton	ics. Studen	t shall have	a clear view	about this	excited new		
Justification	area and ready to contribute to the advances of photonic technology in the broad area							
	of applications such as l	of applications such as light-matter interactions, lithography, nanophotonic devices,						
	nanophotonics in medic	ine, etc. Th	is course air	ns to provide	e a compre	hensive view		
	of nanoscale optical mat	terials and p	photonics to	undergradua	te and grad	luate students		
	by starting at a very eler	nentary lev	el, and grade	ually guiding	the studen	ts to the very		
	frontier of current resear	rch in nano	photonics. I	n addition to	the basic of	concepts, you		
	will learn experimental t	techniques a	and simulati	on methods o	n light inte	eractions with		
	nanostructures. It is exp	ected that	you can app	ly your new	knowledg	e to read and		
	understand the current s	scientific li	terature in tl	he fields of r	anophotor	nics after you		
	complete this course.							
Semester	Ι							
Total						Total		
Student	Learning Approach	Lecture	Tutorial	Practical	Others	Learning		
Learning						Hours		
Time (SLT)								
	Authentic learning	40	40	0	40	120		
	Collaborative learning							
	Independent learning							
Pre-requisite	Basics of laws and p	principles	of nanoopt	ics, nano-ph	otonics, a	ind quantum		
	confinement of a system.							

CO	Expected Course Outcome	Learning	PSO
No. 1	Understand devices and general concepts used in nanooptics, nano- photonics and nano-opto electronics.	Domains U, R, I	No. 1, 7
2	Understand the basic concepts of quantum confined materials	U,R, S	1, 3, 4
3	Understand the interaction dynamics of quantum confined materials and the latest spectroscopic techniques.	U,A,An	1,2,4
4	Understand the basics of photonics, Building blocks of photonic circuits and its effects	U, An, A	1,7
5	Explore the scientific discoveries lead to technological inventions with nanophotonics.	E, S	2, 5
6	Describe broadly about the impact of biomedical research in biotechnology.	R, A	2, 4,5
7	Apply the principles of bio-nanophotonics in to latest inventions of nano medicine.	U, A,C	1,2,3
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

Module No:	Module Content	Hrs	CO.
			No.
Module 1	Foundation of Photonics & Photonic devices	12	1
	Confinement of photons and electrons, propagation through a	Hrs.	
	classically forbidden zone: tunneling, localization under a'		
	periodic potential: bandgap, cooperative effects for photons and		
	electrons, nanoscale optical interactions, axial and lateral		
	nanoscopic localization, nanoscale confinement of electronic		
	interactions, quantum confinement effects, nanoscopic interaction		
	dynamics, nanoscale electronic energy transfer lasers, LEDs,		
	Optical modulators (acousto-optic and electro-optic), Optical		
	fibers and fiber optic components, Frequency conversion,		
	Propagation and confinement of photons and electrons,		
	tunnelling, band gap		
Module 2	Quantum confined materials & Effects	18	2,3
	Quantum-confined materials: quantum wells, quantum wires,	Hrs.	
	quantum dots quantum rings, manifestations of quantum		
	confinement, optical properties, quantum-confined stark effect,		

	dielectric confinement effect, single-molecule spectroscopy,]
	quantum-confined structures as lasing media, metallic		
	nanoparticles and nanorods, metallic nano shells, applications of		
	metallic nano structures. Interaction dynamics, Electronic energy		
	transfer and emission. Near-field optics and Near-fieldscanning		
	optical microscopy, Single molecular spectroscopy and Nonlinear		
	Optical Processes, Timer solved studies, Hetero		
	structures.Quantum confinement effects, Interaction dynamics,		
	Electronic energy transfer and emission.Near-field optics and		
	Near-field scanning optical microscopy, Quantum Dots, Single		
	molecularspectroscopy and Nonlinear Optical Processes, Timer		
	solved studies, Hetero structures		
Module 3	Photonic crystals	12	4,5
	Basics concepts, theoretical modelling of photonic crystals,	Hrs.	
	features of photonic crystals, methods of fabrication, photonic		
	crystal optical circuitry nonlinear photonic crystals, photonic		
	crystal fibers (pcf), photonic crystals and optical communications,		
	photonic crystal sensors. Applications in communication and		
	sensing.		
Module 4	Bionanophotonics and nanomedicine	18	6,7
	Near-field imaging of biological systems, bio derived materials;	Hrs.	
	bio inspired materials bio templates, bacteria as bio synthesizers,		
	near-field bio imaging, nanoparticles for optical diagnostics and		
	targeted therapy, upconverting nanophores forbioimaging.		
	semiconductor quantum dots for bioimaging.		
	Biosensing, nanoclinics for optical diagnostics and targeted		
	therapy, nanoclinic gene delivery nanoclinics for photodynamic		
	therapy, handenine gene derivery handenines for photodynamic		
	therapy		

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	ontact classes, Tutorials, Seminar, Assignments, Authentic learning, Library					
Approach	work, independent studies, Presentation by individual student					
Assessment	Mode of Assessment					
Types	G. Continuous Internal Assessment (CIA)					
	 Surprise test Internal Test – Objective and descriptive answer type Submitting assignments Seminar Presentation – select a topic of choice in the concerned area and present in the seminar H. Semester End examination 					

1. Nanophotonics : Paras N. Prasad, 2004, Wiley

2. Nanophotonics with Surface Plasmons: Vladimir M.Shalaev ,Stoshi Kawata,2007,

elsivier

3. Principles of Nanophotonics :MotoichiOhtsu,KiyoshiKobayashi,Makato

Naruse,2008,CRC press

4. Photonic devices: Jia Ming Liu, 2009, Cambridge University press

5. Integrated Photonics: Fundamentals: GinesLifante, Wiley 2003

6. Photonic CRYSTALS: Advances in Design, Fabrication and Characterization, Kurt

Busch. Stefan.Lolkes, Wiley,2006

7. Principles of NanophotonicsMotoichiOhtsu, Kiyoshi Kobayashi, Tadashi Kawazoe,

Takashi Yatsui and Makoto Naruse, New York, USA: CRC Press-Taylor & Francis

Group, 2008.

8. Nano Biophotonics, HiroshiMasuhara, Satoshi Kawata and Fumio Tokunaga, Oxford,UK: Elsevier, 2007.

10. Photonics crystals, Lourtioz, J.-M., Benisty, H., Berger, V., Gerard, J.-M., Maystre, D., Tchelnokov, A. 2008 springer

11. Principles of Nano-Optics, 2012 Lukas NovotnyBert Hecht, Cambridge oxford press

12. Nanophotonics: Accessibility and Applicability, by National Research Council (ebook)

		GAN	DHI	2	
	E	X		1	
	AHA	$ \Rightarrow$	K		
	12			1	
	[fae	401 en 3		नने 🎼	
4	7464	47 01	5/1/1	. E. M	

MAHATMA GANDHI UNIVERSITY

EMM20E04-Nanosensors and Nanodevices

School of Energy Materials
M. Tech. Program in Energy Science
Nanosensors and Nanodevices
ELECTIVE
2
EMM20E04

Course	In the broadest sense, nat	nosensors a	nd nanodevic	ces are the cr	ritical ena	blers that will
Summary &	allow mankind to exploit the ultimate technological capabilities of electronic,					
Justification	magnetic, mechanical, and biological systems. While the best examples of					
	nanodevices at present	are clearly	associated	with the in	nformatio	n technology
	industry, the potential	for such	devices is	much broad	der. Nan	osensors and
	Nanodevices will ultimate	ately have a	n enormous	impact on	our abili	ty to enhance
	energy conversion, contr	ol pollution	, produce fo	od, and imp	rove hum	an health and
	longevity. This course	summariz	es the diffe	erent types	of nan	osensors and
	nanodevices which have	application	in wide vari	ety of fields	5	
Semester	I					
Total Student						Total
Learning	Learning Approach	Lecture	Tutorial	Practical	Others	Learning
Time (SLT)						Hours
		40	40	0	40	120
Pre-requisite	Basics of laws and princ	iples of the	rmodynamic	s,entropy ar	nd energy	changes of a
	system.					

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the basics of a Nanosensors.	U	1, 2,7
2	Study the sensor characterization and modes of packaging.	U, An	1, 3,4
3	To learn about various Nanosensor materials	U, A, E	1,2,3,4
4	To design Nanomaterials in biochemical sensor and its application	U, A	3,4,5
5	Correlate and record data of the medically significant measures using a bio sensor	U, R, E	5,7
6	Apply the sensing of physical parameters sensed to fabricate appropriate sensors.	U, A, E	2,4,5
7	Understand the processing of input signals of sensors and applying it in electronics	U, A, Ap	4,5
8	To learn about various Nanodevice materials	U, I, An	1,7
9	State and apply basic concepts of Mechanical Sensors and Actuators	U, An, C	1,4,6
10	Find the connection between Metal Insulators, Quantum Structures and Devices	U, A, E	5,7
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), C est (I) and Appreciation (Ap)	reate (C), Ski	ll (S),

Module No:	Module Content	Hrs	CO.
			No.
Module 1	Micro and nano-sensors:	15	1,2,3
		Hrs.	
	Fundamentals of sensors, biosensor, micro fluids, MEMS and		
	NEMS, Packaging and characterization of sensors: Method of		
	packaging at zero level, dye level and firstlevel.		
	Active and Passive sensors - Static characteristic - Accuracy,		
	offset and linearity – Dynamiccharacteristics - First and second		
	order sensors – Physical effects involved in signal transduction.		
Module 2	Nanomaterial based Sensors:	15	4,5,6,7
	Nanomaterials in biochemical sensor design, application for	Hrs.	
	nanoparticles based on gold and semiconductor materials		

(quantum dots). synthesis of	nanomaterials (nano rod,
nanoclusters, nanodiamond and nar	o shells). application of nano
material for analytical purpose	e, Important functions of
nanoparticles.	
Nanomaterials: Nanomaterial	pased colorimetric sensors,
metallic nanoparticles in sensing,	surface functionalization of
gold nanoparticle, Fluorescence b	ased sensing, electrical and
electrochemical sensing. Diffe	erent type of sensors:
Electrochemical, Mass sensitive sen	nsor, biochemical sensors and
their applications. gold nanopart	icle-based surface plasmon
resonance sensors, physical propert	ies of gold nano particle: size
dependent electronic and optoelect	ronic properties, fluorescence
quenching, limit of detection a	nd limit of quantification,
sensitivity of thesensor, selectivity of	of measurements, linear range.

Module 3	Mechanical Sensors and Actuators:	15	8,9
	Accelerometers (capacitive, piezoelectric, piezoresistive,	Hrs.	
	thermal), Force sensors (strain gauges, tactile sensors), Pressure		
	sensors (semiconductor, piezoresistive, capacitive, VRP),		
	Gyroscopes (mechanical, optical, fiber-optics). Night Vision,		
	System, Nano tweezers, nano-cutting tools, Integration of sensor		
	with actuators and electronic circuitry, For other civil		
	applications: metrology, bridges etc., gas sensors.		
	Optical Sensors:		
	Photodiodes, phototransistors and photoresistors based sensors,		
	Photomultipliers, light-to-light detectors, infrared sensors		
	(thermal, PIR, AFIR, thermopiles), CCD sensors and detectors.		
	Surface Plasmon sensors, SERS Sensors		
	Environmental monitoring sensors:		
	Mercury and arsenic contamination in water, atmospheric		
	pollution monitoring sensors.		
Module 4	Metal Insulator Semiconductor devices, molecular	15	10
	electronics, information storage, molecularswitching,	Hrs.	
	Schottky devices		
	Quantum Structures and Devices:		
	Quantum layers, wells, dots and wires, Mesoscopic Devices,		
	Nanoscale Transistors, Single Electron Transistors, MOSFET		
	and NanoFET, Resonant TunnellingDevices, Carbon Nanotube		
	based logic gates, optical devices, Connection with quantum dots		

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library		
Approach	work, independent studies, Presentation by individual student		
Assessment	Mode of Assessment		
Types	I. Continuous Internal Assessment (CIA)		
	Surprise test		
	Internal Test – Objective and descriptive answer type		
	Submitting assignments		
	Seminar Presentation – select a topic of choice in the concerned		
	area and present in the seminar		
	J. Semester End examination		

References

- Nanosensors: Physical, Chemical, and Biological, Vinod Kumar Khanna, CRC Press, 2011.
- 2. Chemical Sensors: An Introduction for Scientists and Engineers, Peter Grundler, Springer.
- 3. Smart Sensors for industrial Applications, KrzysztofIniewski,CRC Press.
- **4.** Introduction to Nanoelectronics, Science, Nanotechnology, Engineering, and Applications, Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, Cambridge University Press, 2007.
- 5. Nanotechnology and Nanoelectronics, Fahrner, Wolfgang (Ed.), 2005, Springer.
- Introduction to the Physics of Nanoelectronics, Tan &Jalil 2012. Woodheadpublishing.
- 7. Fundamentals of Nanoelectronics, George W. H, Pearson education India 2009.
- 8. Current at the Nanoscale Colm Durkan University of Cambridge 2008.
- 9. Nanotechnology and Nanoelectronics, Prof. Dr. W. R. Fahrner, Springer, 2005
- 10. Nanoelectronics and information technology, Rainer Weiser, 2012, Wiley.
- 11. Chemical Sensors and Biosensors; Brian, R Eggins; Wiley; New York, Chichester, 2002.
- 12. Biosensors: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2004.

- 13. Nanomaterials for Biosensors, Cs. Kumar, Wiley VCH, 2007.
- 14. Smart Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.

MAHATMA GANDHI UNIVERSITY EMM20E05 RESEARCH METHODOLOGY

SchoolName School of Energy Materials							
Programme	M. Tech in Energy Science and Technology						
Course Name	RESEARCH METHODOLOGY						
Type of Course Elective							
Credit Value		3					
Course Code		EMM20E05					
Course Summary & Justification	This course provides introduction, meaning, objectives and motivation of research. It also helps the students to understand how research is done, research process, criteria of good research, and problems encountered by researchers in India. Students will be able to study the formulation of hypothesis and review of literature. Learning this course will provide a strong foundation in sampling theory, types and steps in sampling and advantages and limitations of sampling. The course will also provide a deep awareness on computer applications spreadsheet tool, data storing, and features for statistical data analysis. The students will learn about the presentation tool, features and functions, creating presentation, customizing presentation, showing presentation and also about use of Internet, WWW, search engine like Google, Yahoo etc, advanced search techniques. It also describes about interpretation and report writing, presentation of tables and figures, research-scientific misconduct, plagiarism, impact factor, and h-index.						
Semester	Ι						
Total Student Learning Time (SLT)	Learning Approach Lecture Tutorial Practical Others Learn				Total Learning Hours		
	Authenticlearning,40400collaborativelearning,independentlearningindependent				0	40	120
Pre-requisite	Basi	Basic knowledge about conducting research works					

CO	Expected Course Outcome	Learning	PSO
No.	Upon completion of this course, students will be able to;	Domains	No.
1	Understand the meaning, objectives, types, significance of research, and importance of knowing how research is done	R,U	1,2,3
2	Able to acquire the knowledge about sampling technique and computer applications	U,A	2,3,4
3	Learn about presentation tool, features and functions, creating presentation	A,C,An	2,3,5
4	Gather information about use of Internet, WWW, search engine and advanced search techniques.	U,An,E	1,6,7
5	Learn the interpretation, significance of report writing, different steps in writing report	An,S,I	2,3,9
*Rem	ember I, Understand (U), Apply (A), Analyse (An), Evaluate I, Create	(C), Skill (S), Interest
(I) an	d Appreciation (Ap)		

Module No:	Module Content	Hrs	CO.
			No.
Module 1	Research methodology: An Introduction, Meaning of	15 Hrs	1,2
	Research, Objectives of Research, Motivation in		
	Research, Types of Research, Research Approaches,		
	Significance of Research, Research Methods versus		
	Methodology, Research and Scientific Method,		
	Importance of Knowing How Research is Done,		
	Research Process, Criteria of Good Research, Problems		
	Encountered by Researchers in India Questions-		
	Research design- Formulation of hypothesis- Review		
	of literature.		
Module 2	Sampling technique: Sampling theory, Types of	15 Hrs	1,2
	sampling, Steps in sampling-Sampling and Non-		
	sampling error, Sample size, Advantages and		
	limitations of sampling.		
	Data for Research : Primary data, Meaning, Collection		
	methods, Observation, Interview, Questionnaire,		
	Schedule, Pretest, Pilot study, Experimental and case		
	studies, Secondary data, Meaning, Relevance,		
	Limitations and cautions.		
	Processing data: Checking, Editing, Coding,		
	transcriptions and tabulation, Data analysis, Meaning		
	and methods, Quantitative and qualitative analysis.		
Module 3	Computer applications: Spreadsheet Tool:	15 Hrs	2,3,4
	Introduction to spreadsheet application, features and		

	functions, using formulas and functions, Data storing,		
	Features for Statistical data analysis, Generating charts/		
	graph and other features. (Microsoft Excel or similar		
	tool).		
	Presentation tool: Introduction to presentation tool,		
	features and functions, creating presentation,		
	customizing presentation, showing presentation.		
	(Microsoft Power Point)		
	Web Search: Introduction to Internet, Use of Internet		
	and WWW, Using search engine like Google, Yahoo		
	etc, advanced search techniques.		
Module 4	Interpretation and report writing: Meaning of	15 Hrs	2,4,5
	Interpretation, Why Interpretation? Technique of		
	Interpretation, Why Interpretation? Technique of Interpretation: Precaution in Interpretation,		
	Interpretation: Precaution in Interpretation,		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Indexing, presenting footnotes,		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Indexing, presenting footnotes, abbreviations, Presentation of tables and figures,		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Indexing, presenting footnotes, abbreviations, Presentation of tables and figures, Contents, Styles of reporting, Referencing, Oral		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Indexing, presenting footnotes, abbreviations, Presentation of tables and figures, Contents, Styles of reporting, Referencing, Oral Presentation, Mechanics of Writing a Research Report,		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Indexing, presenting footnotes, abbreviations, Presentation of tables and figures, Contents, Styles of reporting, Referencing, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports, Research-		
	Interpretation: Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Indexing, presenting footnotes, abbreviations, Presentation of tables and figures, Contents, Styles of reporting, Referencing, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports, Research- Scientific misconduct, Plagiarism, impact factor, h-		

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library work, independent studies, Presentation by individual student
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	Surprise test
	Internal Test – Objective and descriptive answer type
	Submitting assignments
	Seminar Presentation - select a topic of choice in the concerned area and present
	in the seminar
	Semester End examination

- 1. Montgomery, C Douglas (2007), 5/e, Design and Analysis of Experiments, (Wiley India).
- Montgomery, C Douglas. &Runger, George C. (2007), 3/e, Applied Statistics &Probability for Engineers (Wiley India).
- 3. C.K Kothari. (2004), 2/e, Research Methodology- Methods and Techniques (New Age

International, New Delhi).

- 4. B.L Garg,,,RKaradia., F Agarwal, and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- C.R Kothari., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 6. S.C Sinha. and A.K Dhiman,., 2002. Research Methodology, Ess Publications. V2.
- 7. W.M.K Trochim,., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- B.L Wadehra, 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing. How to write a Technical report – AlamSmithee, Fictitious Institute of Technology, 1999.
- 10. Hering Lutz, Hering Heike, Springer, 2010How to write technical reports-Understandabble structure, Good Design, Convincing presentation –

Laboratory Courses

	MAHATMA GANDHI UNIVERSITY		
	SYNTHESIS AND CHARACTERIZATION OF ADVANCED MATERIALS FOR ENERGY APPLICATIONS		
School Name	School of Energy Materials		
Programme	M.Tech in Energy Science and Technology		
Course Name	Synthesis and Characterization of Advanced Materials for Energy Applications		
Type of Course	3		
Credit Value	CORE		
Course Code	EMM20C05		

Course Summary & Justification	Students will learn how to apply common laboratory techniques to determine the structure and the chemical properties of compounds. The lab will comprise hands- on materials synthesis experiments along with their characterization with focus on interpretation. Synthesis and characterization of materials. Understand the principles behind synthesis techniques, perform experiments, analyse obtained results and interpret outcomes (effects of synthesis conditions) of obtained materials, their structure and properties					
Semester	Ι					
Total Student Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
		0	0	120	30	150
Pre-requisite	Basic knowledge of Chemistry. Any discipline of engineering, chemistry and physics can complete the course.					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Able to perform experiments individually and gain knowledge about principles and techniques involved in various experiments	U	1
2	To learn about various characterization techniques	U, A	
3	Acquire Experimental skills & handling instruments.	А	3
4	Gain Knowledge in Prediction & verification of Experimental results	Ар	2
5	Understand the concept of materials for energy application	An	2, 3, 6
6	Understand the concept of synthesis of materials	U	6,7
7	Correlate the reactivity of a compound with its structure.	С	6
8	Evaluate the yield of a particular product in a mixture under a set of conditions	Е	4, 5
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

Module No:	Module Content	Hrs	CO.
			No.
Module 1	Synthesis and Characterization techniques	50	1,6
	UV-visible spectroscopy, Vibrational spectroscopy- Raman and	Hrs.	
	Infrared, Principles of vibrational spectroscopy,		
	Photoluminescence Spectroscopy, Electrochemical Impedance		

	Spectroscopy, Polarized neutron Reflectivity, Infrared and		
	Raman activity, Fourier transform infrared spectroscopy,		
	instrumentation, X-ray diffraction (XRD), Raman spectroscopy,		
	Micro Raman		
Module 2	X-ray photoelectron spectroscopy (XPS), Ultra-violet	30	2,6
	photoelectron spectroscopy (UPS), Auger electron spectroscopy	Hrs.	
	(AES), Atomic model and electron configuration, Principles of		
	XPS and AES, Chemical shift, Depth profiling, Instrumentation		
Module 3	Optical Microscopy: Image formation, Resolution, Aberrations,	70	5,6
	Imaging modes, Specimen preparation, Confocal microscopy,	Hrs.	
	Thermal analysis: Thermo gravimetric analysis (TGA),		
	Differential thermal analysis (DTA), Differential scanning		
	calorimetry (DSC), Dynamic mechanical analysis (DMA),		
	Thermomechanical analysis (TMA) and Dynamic mechanical		
	thermal analysis (DMTA), Basic theory, Instrumentation and		
	applications		
	Other characterization methods: Universal Testing Machine,		
	Vibrating sample Magnetometer, Vector network Analyzer,		
	vibrating Sample Magnetometer, Brunauer-Emmett Teller		
	surface areas, Zeta sizer		
	Non-destructive testing: Radiography, Ultrasonic, Acoustic		
	emission, Thermography, Holography, Basic principles,		
	Applications in airframe and rocketry		
	Electron microscopy: Scanning electron microscopy (SEM),		
	Field Emission Scanning Electron Microscopy, Instrumentation,		
	Electron beam-specimen interaction, Specimen preparation,		
	Energy dispersive spectroscopy (EDS) in electron microscopes;		
	Transmission electron microscopy (TEM) - Basics of TEM,		
	Electron sources, Preparation of samples for electron microscopic		
	studies, Image modes, Image contrast.		
	Scanning Probe Microscopies: Scanning tunneling microscope		
	(STM) and Atomic force microscope (AFM) - Working		
	principles, working modes, Image artifacts		

Assessment	Mode of Assessment					
Types	• Lab/Experiment skills					
	Lab record/Report					
	Viva-voce					
	• Lab Discipline (participation, punctuality, accuracy)					

- 01. B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith, A.R. Tatchell, Vogel's Text Book of Practical Organic Chemistry, ELBS, 2005.
- 02. R.M. Silverstein, G.C. Bassler, T.C. Merril, Spectrometric Identification of Organic Compounds, John Wiley & Sons, 1981.
- D. Pasto, C.R. Johnson, M.J. Miller, Experiments and Techniques in Organic Chemistry, PrenticeHall, 1992.

	MAHATMA GANDHI UNIVERSITY
/विद्यपा अमृतमञ्जू	EMM20C06 Comprehensive Viva-Voce

SchoolName	School of Energy Materials					
Programme	M.Tech in Energy S	M.Tech in Energy Science and Technology				
Course Name	Comprehensive Viv	a-Voce				
Course Credit	3					
Type of Course	CORE					
Course Code	EMM20C06					
Course Summary	The comprehensive	viva-voce s	hall be con	ducted by t	he Exami	nation Board
& Justification	consisting of the Cha	consisting of the Chairman, the Internal Examiner and the External Examiner.				
	Thorough understanding of all the M.Tech. level course contents and recent					
	trends in the broad area of energy sciences are evaluated					
Semester	I					
Total		Lecture	Tutorial	Practical	Others	Total
StudentLearningT	Learning Approach					LearningH
ime (SLT)						ours

	Classroom studies,	-	-	-	-	-
	lab work, library					
	Library work,					
	independent					
	learning etc.					
Pre-requisite	Basic as well as in-depth knowledge in the coureses he/she studied					

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	At the end of the course the students are expected to		
1	Achieve fundamental and in-depth knowledge	А	3
2	Acquire more in-depth knowledge of the major subject of	Ap	1,2,3,4,5,6,
	study		7
3	Deeper knowledge of methods in the major subject of study.	А	1, 4
4	Able to contribute to research and development work.	U	3
*Reme	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate	(E), Create	(C), Skill (S),
Interes	st (I) and Appreciation (Ap)		

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	E-learning, interactive Instruction:, Seminar, Authentic learning, Library work,				
Approach	laboratory work, Team work, independent learning and Group discussion,				
	Presentation of research work				
Assessment	Mode of Assessment				
Types	Thorough understanding of all the M.Tech level course contents and recent trends				
	in the broad area of energy sciences are evaluated. The candidate will be asked				
	questions based on the whole syllabus he/she studied in the entire programme.				
	How he/she answered or responded the questions asked will be considered for				
	evaluation.				

Core courses

CAN DHIUN	MAHATMA GANDHI UNIVERSITY
REERIT SHERE	EMM20C07 – Nuclear Energy Technology
School Name	School of Energy Materials
Programme	M. Tech. Program in Energy Science
Course Name	Nuclear Energy Technology
Type of Course	Core
Credit Value	3
Course Code	EMM20C07

Course	In broadest sense, this co	urse is desi	In broadest sense, this course is designed to introduce students to the foundations of							
Summary &	nuclear reactions and their effects on processes we use every day for energy, work,									
Justification	or discovery. It provided an in-depth knowledge on nuclear reactions and various									
	nuclear reactor materials	s and fuels.	This course	helps to un	nderstand	the basics of				
	nuclear reprocessing and	l separation	technologie	s. In additic	on to this,	it provided a				
	basic understanding of ra	dioactivity	and its effect	on humans	and their	environment,				
	as well as the techniques	for their re	mediation ar	nd disposal.						
Semester	II									
Total Student	Total									
	Learning Approach Lecture Tutorial Practical Others Learning Hours									
Learning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others					
0	Learning Approach	Lecture 37	Tutorial 0	Practical 0	Others 60	Learning				
0	Learning Approach The student has to have a	37	0	0	60	Learning Hours 97				

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the theory and concept of nuclear reactions	R, U	1
2	To learn about various types of nuclear reactors	U	1
3	To learn about various nuclear reactor materials and fuels	U, A, E	1
4	To impart knowledge on nuclear reprocessing	A, E	1
5	To demonstrate knowledge on radioactive waste disposal and radiation protection	An, A	3
*Rem	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), C	reate (C), Skil	l (S),
Intere	est (I) and Appreciation (Ap)		

Module No:	Module Content	Hrs	CO.
			No.
<u>Module 1</u>	Nuclear Reactions: Nuclear energy conversion, Chemical and nuclear equations, nuclear reactions. Mechanism of Nuclear Fission and Fusion, Energy from fission and fuel burnup Nuclides, Radioactivity, Decay Chains, Neutron Reactions - the Fission Process, Reactors, Types of Fast Breeding Reactors, Design and Construction of Nuclear reactors, Heat Transfer Techniques in Nuclear Reactors, Reactor Shielding, Production of nuclear fuels	15 Hrs.	1,2,3
<u>Module 2</u>	Nuclear Reactor Materials and Fuels, Nuclear Fuel Cycles- Characteristics of Nuclear Fuels Uranium - Production and Purification of Uranium-Conversion to UF4 and UF6 Other Fuels like Zirconium Thorium-Berylium design of nuclear reactors and safety analysis Fuel rod design, Steam cycles for nuclear power plants reactor heat removal coolant channel orficing, Core thermal design, thermal shields, fins in nuclear plants, Core thermo-hydralic design, Safety analysis, Time scales of transient flow andheat transfer process, LOCA.	15 Hrs.	4,5,6,7

Module 3	Reprocessing: Nuclear Fuel Cycles - Spent Fuel Characteristics - Role of Solvent Extraction in Reprocessing - Solvent Extraction Equipment. Separation of Reactor Products: Process to be Considered - 'Fuel Element' Dissolution - Precipitation Process - Ion Exchange - Redox - Purex - TTA - Chelation - U235 - Hexone - TBP and Thorax Processes - Oxidative Slaging and Electro - Refining - Isotopes - Principles of IsotopeSeparation.	15 Hrs.	8,9
Module 4	Waste Disposal and Radiation Protection: Types of Nuclear Wastes, Safety Control and PollutionControl and Abatement, International Convention on Safety Aspects, Radiation Hazards Prevention.	15 Hrs.	10

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library
Approach	work, independent studies, Presentation by individual student
Assessment	Mode of Assessment
Types	K. Continuous Internal Assessment (CIA)
	Surprise test
	Internal Test – Objective and descriptive answer type
	Submitting assignments
	Seminar Presentation – select a topic of choice in the concerned area and present in the seminar
	L. Semester End examination

References

- 1. Lamarsh, J.R. (1966) Introduction to Nuclear Reactor Theory, Wesley
- 2. Duderstadt, J.J. and Hamilton, L.J. (1976) Nuclear Reactor Analysis John Wiley
- 3. Walter, A.E. and Reynolds, A.B. (1981) Fast Breeder Reactors, Pergamon Press
- **4.** Glasstone, S. and Sesonske, A. (1981) Nuclear Reactor Engineering (3r Edition), Von Nostrand
- 5. Winterton, R.H.S. (1981) Thermal Design of Nuclear Reactors—Pergamon Press
- 6. Essentials of Nuclear Chemistry Hari Jeevan Arnikar, New age international, 1995

CAN DHI CAP	MAHATMA GANDHI UNIVERSITY
मित्राया अमृतमधन्ते	EMM20C08 Bio - Energy Technology
School Name	School of Energy Materials
Programme	M. Tech. in Energy Science and Technology
Course Name	Bio - Energy Technology
Type of Course	CORE
Credit Value	3
Course Code	EMM20C08

Course Summary & Justification	Bioenergy is one of many diverse resources available to help meet our demand for energy. It is a form of renewable energy that is derived from recently living organic materials known as biomass, which can be used to produce transportation fuels, heat, electricity, and products. Abundant and renewable bioenergy can contribute to a more secure, sustainable, and economically sound future by, supplying domestic clean energy sources, reducing the dependence on oil, generating jobs, and revitalizing rural economies. The bioenergy industry is undergoing rapid growth due to the policy drivers underpinning the current interest in bioenergy, such as energy security and climate change. This module provides an overview of key topics on sustainable bioenergy production, including the main biomass systems for bioenergy generation and the wide range of bioenergy conversion and utilisation methods. This course adopts a whole systems approach and enables students to critically appraise the sustainability of various biomass energy production routes. The module teaching and learning will comprise lectures and a site visit. The coursework requires students to either design a biofuel/bioenergy								
Semester	Ι								
Total Student Learning Time (SLT)	Learning ApproachLectureTutorialPracticalOthersTotal Learning Hours4040040120								
Pre-requisite	Basic knowledge of th			~					

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Summarise the main sources of biomass, and the framework within which biomass is considered as a renewable energy source	U	1,7
2	Calculate the energy generating potential of biomass as an energy source used in different system design choices	U, A, An	3,4,5
3	Distinguish between the different biomass conversion processes in terms of operating conditions, useful products and by-products.	U, An	2,5,7
4	Investigate the energy conversion efficiency quantitatively using a full life cycle approach in any particular context	U, An, E	1,2,4
5	Evaluate clearly and concisely the benefits and problems relating to the production and use of different forms of biomass energy	U, A, An	3,4,5
6	Select and design systems that work for the community, the environment and the client by making the appropriate assumptions and utilising the right tools and analyses	U, A, An, E,	1,2,4,7
7	Critically assess the quality of the data and the information source. Assess the framework within which biomass is considered as a renewable energy source, including the socioeconomic, political, historical, and environmental contexts that are relevant	U, A, An, E, C	2,3,4
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

Module	Module Content	Hrs	CO.
No:			No.
Module	Introduction: Biomass: types, advantages and drawbacks, Indian	12	1,2,3
1	scenario, characteristics, carbon neutrality, conversion mechanisms, fuel assessment studies.	Hrs.	
Module	Biomethanation: Microbial systems, phases in biogas production,	12	4,5,6,7
2	parameters affecting gas production, effect of additives on biogas yield, possible feed stocks. Biogas plants, types, design, constructional details and comparison, biogas appliances, Burner, illumination and power generation, effect on engine performance.	Hrs.	

Module 3	Combustion: Perfect, complete and incomplete, equivalence ratio, fixed Bed, fluid Bed, fuel and ash handling, steam cost comparison with conventional fuels. Briquetting: types of Briquetting, merits and demerits, feed requirements and pre-processing, advantages, drawbacks.	12 Hrs.	8,9
<u>Module</u> <u>4</u>	Gasification: Types, comparison, application, performance evaluation, economics, dual fuel engines, 100 % Gas Engines, engine characteristics on gas mode, gas cooling and cleaning train.	12 Hrs.	10
Module 5	Pyrolysis and Carbonization: Types, process governing parameters, thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetry, Typical yield rates.	12 Hrs.	

Teaching and	Classroom Procedure (Mode of transaction)						
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library						
Approach	work, independent studies, Presentation by individual student						
Assessment	Mode of Assessment						
Types	M. Continuous Internal Assessment (CIA)						
	Surprise test						
	Internal Test – Objective and descriptive answer type						
	Submitting assignments						
	Seminar Presentation – select a topic of choice in the concerned area and present in the seminar						
	N. Semester End examination						

- 1. David Boyles, (1984) Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester
- 2. Khandelwal, K.C, Mahdi, S.S. (1986) *Biogas Technology* A Practical Handbook, Tata 35 McGraw Hill
- 3. Mahaeswari, R.C. (1997) Bio Energy for Rural Energisation, Concepts Publication
- 4. Tom B Reed, (1981) *Biomass Gasification Principles and Technology*, Noyce Data Corporation, Best Practises Manual for Biomass Briquetting, I R E D A, 1997
- 5. Eriksson S. and M. Prior, (1990) *The briquetting of Agricultural wastes for fuel*, FAO Energy and Environment paper
- 6. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S
- 7.

CAN DHICH IN	MAHATMA GANDHI	UNIVER	SITY				
रिहारतप्राप्त विद्यया अमृतमइन्द	EMM20E09– Materials and devices for energy application						
School Name	School of Energy Mate	rials (SEM	()				
Programme	M. Tech Energy Science	e and Tecl	hnology				
Course Name	Materials and Devices	for Energy	Applicati	on			
Course Credit	3						
Type of Course	ELECTIVE						
Course Code	EMM20C09						
Course Summary & Justification	The students are introduce electrochemical converses chemical mechanisms operation. They learn morphology, compositi devices. They are acquait of active materials inter- techniques for investig additives, supports) and acquainted with the most the novel energy devices they learn about wider a impact on environment performance, development This course is intended a working in renewable of aims to give the studen harvesting and storage of approaches will be discu- This will be done with improve the state of the discuss solar power and	sion and sto that are e about th on and fur nted with a o electrode gation of d interaction t important and measu aspects con and sustai ent of relevant as a review of energy and nt a birds-of materials. The art. After	orage. They exploited the relation actionality dditional effection e composite individual on between existing provide the context of sustainability events for their cerning the nable develop ant infrastrue of the challed sustainability events on matching focus on matching this thoroug	y are acquain by such de- ship betwork of material fects occurres. They a component these com- oblems and further import oblems and further import oblems and further import introduction lopment, sa acture etc. enges facing lity science of the curre al of variou energy nee aterials inno	inted with evices du- een the s constitu- ing upon i are introd s (active nponents. drawback provement on of nove afety aspe- g materials and tech nt topics s energy l ds facing povations re- tion, the c	physical- ring their structure, atting such integration uced into material, They get is found in is. Finally, el devices, cts, price- s scientists nology. It in energy harvesting the world. equired to ourse will	
Semester	2	1	1	•	•		
TotalStudentLearningTime(SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learnin g Hours	
		40	40	0	40	120	

Pre-requisite	General Chemistry and Physics, Introductory Materials Science, Elementary
	Semiconductor Theory, Thermodynamics of Materials.

Module No:	e Module Content		CO. No.
1	Elements of Semiconductor Physics Introduction to Semiconductors, Types of Semiconductors; Crystalline and Amorphous Semiconductors; Direct and Indirect Bandgap Semiconductors; Intrinsic and Extrinsic Semiconductors; Compound Semiconductors, Behaviour of the Chemical Potential, Metal– Semiconductor Junction, Rectifying Contact, Metal–Semiconductor Junction, Ohmic Contact, The p–n Junction, Bipolar Transistor, Field Effect Transistor, Metal Oxide Semiconductor Field Effect Transistor (MOSFET), CMOS, Processing of Semiconductor Devices Organic Semiconductors: Electronic Configuration and Concept of Atomic Orbital, Hybridization and Overlapping of orbitals, Molecular Orbital, LCAO theory, Bonding and Antibonding orbitals, sigma bonding and pi- bonding, Material Origin of bandgap in organic semiconductors, Charge transport in organic semiconductors, Types of organic semiconductors, Optical and Electrical Properties of Organic Semiconductors, Organic Semiconductor Devices: Principal and Concepts, Processing of Organic	10	1,2
2	Semiconducting Materials and Devices. Materials for hydro power generation Introduction: India' vast potential of hydro power; problem of high silt content of Himalayan rivers and its associated erosion damage, and high velocity streaming water causing cavitation. Size and shape of particles, hardness of particles and its concentration in water. Chemical composition, microstructure, mechanical properties like hardness, ductility, tensile strength, work-hardening rate and toughness. Materials for thermal power generation: Introduction to the constraints that are currently placed 36 on power generation plant in terms of environmental impact and developing of high efficiency, low emission systems. Measures to improve the efficiency of a power plant, Increasing the temperature and the pressure of the steam entering the turbine.	8	3,4
3	Materials for photovoltaics Principles of photovoltaic energy conversion (PV), Types of photovoltaics Cells, Physics of photovoltaic cells; First generation solar cell materials; single and polycrystalline Silicon, amorphous silicon: growth and wafer processing, contact materials, materials for surface engineering. Second generation solar cell materials; CdSe, CdTe, Copper Indium Gallium Selenide (CIGS), Gallium Arsenide for applications in photovoltaics, Materials for thin film solar cells, Thin film processing, and properties. Contact materials; Quantum Dots, Organic materials,	10	5

	Composites, Dyes, Perovskites and their synthesis, characterization and properties, Interface energetics, photoactive layers and their materials, role of electron transport, hole transport, electron blocking and hole blocking materials and their processing. Contact materials and processing of contact layers.		
4	Materials for energy harvesting	10	5,6
	Piezoelectric, Pyroelectric and Thermo-electrics materials, Electrostatic (capacitive), Energy Harvesting and materials, energy from Magnetic Induction, Metamaterial, energy from atmospheric pressure changes, electroactive polymers (EAPs), nanogenerators, Ambient radiation sources and nanoantenna, energy from noise.		
5	Materials for Energy Storage	12	6
	Primary and secondary batteries. Battery Management systems and System Performance Electrochemistry and electro-chemical Battery materials, Primary and Secondary Batteries, battery potential, charge figure of merit, Energy density, power density, price and market polarization losses, thermodynamics of battery materials, tortuosity and porosity of battery materials, reversible and irreversible interfacial reactions, battery architecture and design guidelines, Cathode and anode materials, Lead–acid battery, Nickel–cadmium battery (NiCd), Nickel– metal hydride battery (NiMH), Lithium-ion battery, Lithium-ion polymer battery, Organic radical batteries, redox flow batteries, Nanostructured Carbon-based materials, Nano-Oxides, Novel hybrid electrode materials. Conducting polymer as electrode materials for batteries and supercapacitors; Bi-functional polymeric binders, Electric vehicles and failure mechanisms of lithium batteries. 37 Super Capacitor, Electrochemical supercapacitors, Basic components of supercapacitors like types of electrodes like high surface area, activated carbons, metal oxide and conducting polymers, aqueous and organic electrolytes. Nanostructured Carbon-based materials, electrical double layer model, Principles and materials design, Redox capacitor Nano Oxides, conducting polymers-based materials, current status and future trends. Hydrogen Storage materials for fuel cells: Physical and chemical properties, general storage methods, compressed storage-composite cylinders, glass micro sphere storage, zeolites, metal hydride storage, chemical hydride storage and cryogenic storage, Carbon based materials for hydrogen storage. Hydrogen safety aspects, backfire, pre-ignition, hydrogen emission NOx control techniques and strategies, Hydrogen powered vehicles. Metal hybrids, Nanostructured metal hydrides, Non- metal hydrides, Liquid organic hydrogen carriers (LOHC), Amine borane complexes, Nano borohydrides and nano catalyst doping, imidazolium ionic liquids, hosphonium borate, Carbonite substances, Meta	10	
6	Materials for fuel cells	10	6,7
	Fuel Cells, components of fuel cells, Types of fuel cells, Acid/alkaline fuel cells, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten		

carbonate fuel cell, Solidoxide fuel cells (SOFC), Types of solid oxide	
fuel cells: High temperature, intermediate temperature Single chamber	
solid oxide fuel cells, nanomaterials design for Proton exchange	
membrane fuel cells (PEMFC); Direct methanol fuel cells (DMFC);	
Problems with fuel cells, applications of fuel cells, difference between	
batteries and fuel cells, principle of working of fuel cell, performance	
characteristics of fuel cells, efficiency of fuel cell, fuel cell stack,	
description of some commercially available fuel cell stacks, fuel cell cars	
and buses.	

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand the basic elements of Semiconductor Physics and theory of band structure.	U, R	1,2
2	Identify the potential of energy harvesting materials and its applications in various sectors of the society.	U, C	2,4
3	Familiarise the concept of hydroelectric and thermoelectric power production and study its environmental impacts.	U, I	2,3
4	Gain knowledge in various photovoltaic materials, devices and systems.	A, S	3,6
5	To impart knowledge on energy storage materials and devices.	U, R	3,7
6	Development of a sustainable energy harvesting and storage system.	E, S	4,7
7	To impart awareness on significance of various energy materials in the future technological applications.	E, Ap.	3,7
	 mber (R), Understand (U), Apply (A), Analyse (An), Evaluate (At (I)) t (I) and Appreciation (Ap)	E), Create (C	C), Skill (S),

Teaching and Learning Approach	Lassroom Procedure (Mode of transaction) ontact classes, Tutorials, Seminar, Assignments, Authentic learning, Library ork, independent studies, Presentation by individual student			
Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	• Surprise test			
	• Internal Test – Objective and descriptive answer type			

C	Submitting assignments
c	Seminar Presentation – select a topic of choice in the concerned
	area and present in the seminar
B. Seme	ester End examination

1. Introduction to Solid State Physics, 8th Ed., C. Kittel, J. Wiley & Son

- 2. Physics of Functional Materials, Hasse Fredriksson and Ulla Åkerlind, J. Wiley & Sons
- 3. Textbook of polymer science, Fred W Billmeyer, J. Wiley & Sons
- 4. Materials Chemistry, Fahlman, Bradley, Sp

5. Dieter, G. E., "Mechanical Metallurgy", 3rd Ed., 1988, McGrawHill,

6. Reed-Hill, R.E. and Abbaschian, R., "Physical Metallurgy Principles", 1992, The PWSKENT Series in Engg.

7. Hutchings, I.M. "Tribology - Friction and Wear of Engineering Materials", 1992, Edward Arnold Publications Ltd.

8. Linden D. and Reddy Thomas B., "Handbook of Batteries", 2001, McGraw Hill Publications 5. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd Edition, Wiley (2003)

9. Xianguo Li, Principles of Fuel Cells, Taylor and Francis (2005)

10. S. Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer (2006)

11. O'Hayre, S. W. Cha, W. Colella and F. B. Prinz, Fuel Cell Fundamentals, Wiley (2005)

12. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition,

Wiley, 2000 10.A. Faghri and Y. Zhang, Transport Phenomena in Multiphase Systems, Elsevier 2006 P

13. Electrochemical methods: Fundamentals and Applications, Allen J.Bard and Larry R. Faulkner, 2nd Edition John Wiley & Sons. Inc (2004)

14. D. Linden Ed., Handbook of Batteries, 2nd edition, McGraw-Hill, New York (1995) 7

15. G.A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, KulwerAcdemic Publishers, Dordrecht, Netherlands (2004).

16. J. Larmine and A. Dicks, Fuel Cell System Explained, John Wiley, New York (2000).

17. Science and Technology of Lithium Batteries-Materials Aspects: An Overview, A. Manthiram, Kulwer Academic Publisher (2000).

18. M. S. Whittingham, A. J. Jacobson, Intercalation Chemistry, Academic Press, New York (1982).

19. M. Wakihara, O. Yamamoto, (Eds.) Lithium Ion Batteries: Fundamentals and Performance, Wiley –VCH, Weinheim (1998).

20. A Handbook of Nanotechnology, U. Kumar, AGROBIOS

21. Springer Handbook of Nanotechnology, B. Bhooshan, Springer

22. Advances in Nanomaterials, Zishan Husain Khan & M. Husain, Springer

23. Recent Trends in Nanomaterials: Synthesis and Properties (Advanced Structured Materials), Zishan Husain Khan, Springer

24. Nanomaterials and Their Applications, Zishan Husain Khan, Springer

25. Detlef Stolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.

26. Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical 39 Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.

27. Francois Beguin and Elzbieta Frackowiak ,"Super capacitors", Wiley, 2013.

28. Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

MAHATMA GANDHI UNIVERSITY

EMM20E06– Energy efficient lighting and displays

School Name	School of Energy Materials (SEM)					
Programme	M. Tech Energy Science and Technology					
Course Name	Energy efficient light	Energy efficient lighting and displays				
Course Credit	4					
Type of Course	ELECTIVE					
Course Code	EMM20E06					
Course Summary & Justification	This course is designed at providing students with technical aspects of different lighting techniques. The course also discusses about the conventional materials used for the preparation of organic light emitting diodes (OLED) and its working principle. Moreover, the course will provide a basic concepts of various display technologies and its applications. This course is aimed at imparting advanced knowledge in Lighting and Lighting System Elements, the need of energy efficiency in lightening technique, Methodology of Lighting System. These courses also provides basic concepts of different solid state lightening techniques and carry out research on the development of organic Light Emitting Diodes and conduct studies in energy conservation and environmental protection.					
Semester	2					
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical		Total Learning Hours
Pre-requisite	Others include: Research, Fieldworks, Independent Learning etc Basics of organic light	37	diodes and	their worki	60	97 Je
	Dasies of organic light		uroues allu		ng princip	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	To study the basics of lighting and lighting system elements	U	1,7
2	To learn about solid state lighting technique	U	1,7
3	Understand the concept of organic light emitting diodes	U, A,S	2,7

4	To study the concept of fiber optic lighting materials	U, An, S	3,7
5	To study in depth about display technology	U, R	1,2,3
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)		

Module No:	Module Content	Hrs	CO. No.
1	Introduction to Lighting and Lighting System Elements: Need for Energy Management, Illumination requirements for various tasks Activities/Locations, Basic Terms in Lighting System and Features, Light Sources, Luminaries, Ballasts, Lamp Types and their Features, Methodology of Lighting System, Day lighting, Lighting system controls, System maintenance, Operating schedule, Psychology of changeover, Lighting energy management in buildings: Case Studies, Some Good Practices in Lighting, History of Lighting	20	1
2	Solid State Lighting: Florescence, Phosphorescence, Electroluminescence, Inorganic Luminescent Materials and Devices (Light Emitting Diodes and Light Emitting,Transistors) Blue and Ultraviolet LEDs, White LEDs, RGB system Phosphor Based LEDs	20	2
3	Organic Light Emitting Diodes: Introduction to Organic Semiconductors, Classification of Organic Semiconductors, Florescence, Phosphorescence, Thermally Active Delayed Fluorescence and Hyperfluorescence in Organic Materials, Different generations of Organic Light Emitting Diodes and their processing, Blue OLEDs and White OLEDs, Technical aspects of OLEDs	15	3
4	Fiber Optic Lighting: Types of Fibers, Fabrication technology, Materials development for fibre optic, Transmission losses, Use of fibre in lighting	15	4
5	Display Technology: History of Display Technology, LCD display technologies and devices thin-film transistor (TFT) technology for LCD, Back lighting technologies for LCDs, Field-emissive, electro-chromic, and photo-chromic displays, Plasma Display, Electronic-ink, electronic paper (e-paper) and flexible display technologies and their applications, Laser based projection displays, Digital micromirror devices (DMD) and pico-projectors, Three-dimensional (3-D) display technologies, Micro displays, STEREOSCOPIC 3D displays, Integral imaging, Polarization based 3Ddisplays, HOLOGRAPHIC 3-D displays, Laser based 3D-TV	20	5

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) 1. Direct Instruction: Lecture, Explicit Teaching, E-learning 2. Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning 3. Flip classroom 			
Assessment Types	Mode of Assessment A. Formative Assessment B. Summative assessment			

- 01. Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays, Vinod Kumar Khanna, CRC Press
- 02. Materials for Solid-State Lighting and Displays, Adrian Kitai, John Wiley & Sons Ltd.
- 03. Handbook of Display Technology, Joseph A. Castellano, Gulf Professional Publishing
- 04. Handbook of Visual Display Technology, Janglin Chen, Wayne Cranton, Mark Fihn, Springer

PERFECT SIZENTES	MAHATMA GANDHI UNIVERSITY
	EMM20E07– Photovoltaic Techniques
School Name	School of Energy Materials (SEM)
Programme	M. Tech Energy Science and Technology
Course Name	Photovoltaic Techniques
Course Credit	4
Type of Course	ELECTIVE
Course Code	EMM20E07

Course Summary & Justification	This course aims to develop researchers who can provide fundamental inputs required to meet the challenges of a sustainable energy future. This course is designed at providing students with concepts of photovoltaic (PV) systems Overview of PV usage in the world, basic structure and characteristics of solar cells, study about Solar Power Plant, its Components and Working and Types of Solar Power plant. The course also provide knowledge about solar power management This course offers an advanced knowledge within the field of photovoltaic system technology. By completing this course students can get a knowledge about the solar resource and how photovoltaic energy conversion is used to produce electric power. This course also provides fundamental starting point for the design and fabrication of different solar cell and module technologies,							
Semester	for the design and fabrication of different solar cell and module technologies, the various photovoltaic system components, how to design a photovoltaic cell etc.							
SemesterTotalStudentLearningTime		Lastura	Tutorial	Duestical	Others	Total Learning		
(SLT)	Learning Approach	Lecture 40	Tutorial 40	Practical	Others 40	Hours 120		
Pre-requisite	Basics of Solar Ener Solar spectrum, Elec			-	nits and m			

Module No:	Module Content	Hrs	CO. No.
1	Introduction to photovoltaic (PV) systemsHistorical development of PV systems, Overview of PV usage in the world, Solar energy potential for PV, irradiance, solar radiation and spectrum of sun, geometric and atmospheric effects on sunlight,		1,2
	Photovoltaic effect, conversion of solar energy into electrical energy, behaviour of solar cells		
2	Photovoltaic devices, modules and technical parameters Solar cells, basic structure and characteristics: Single-crystalline, multicrystalline, thin film silicon solar cells, emerging new technologies, Electrical characteristics of the solar cell, equivalent circuit, modeling of solar cells including the effects of temperature, irradiation and series/shunt resistances on the open-circuit voltage and short-circuit	15	1,3

	current. Solar cell arrays, PV modules, PV generators, shadow effects and bypass diodes, hot spot problem in a PV module and safe operating area. Terrestrial PV module modelling.		
3	Solar Power Plant Components and Working: Types of Solar Power Plant: Off grid, Grid Connected, Hybrid, Interfacing PV modules to loads, direct connection of loads to PV modules, connection of PV modules to a battery and load together, DC-DC Converters, Inverters.	10	4,5
4	Solar Power Management Power conditioning and maximum power point tracking (MPPT) algorithms based on buck- and boost-converter topologies, Maximum power point tracking (MPPT) algorithms, Inverter topologies for stand- alone and grid-connected operation. Analysis of inverter at fundamental frequency and at switching frequency.	15	6
5	Grid Codes and Standards Grid Codes, Anti Islanding protection, LVRT protection, HVRT Protection, Active and Reactive Power Control, Advance Control for Inverters, Feasible operating region of inverter at different power factor values for grid-connected systems	10	5,6

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understanding the solar cell theory to improve and optimize its performance of solar cell device.	U, An	1,2
2	Identify the potential of energy harvesting systems.	U, I	2,4
3	To learn about fabrication of different types of solar cells.	U, C	2,3,5
4	Gain knowledge about photovoltaic technical parameters and emerging technologies.	A, S	3,6

5	Understand the components of solar powerplant and its working.	U, R	4,7
6	Deep understand in solar power management.	E, Ap.	7
	ber (R), Understand (U), Apply (A), Analyse (An), Evaluate (A (I) and Appreciation (Ap)	E), Create (C)), Skill (S),

Teaching and Learning Approach	Learning Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Libra		
Assessment	Mode of Assessment		
Types	C. Continuous Internal Assessment (CIA)		
	• Surprise test		
	• Internal Test – Objective and descriptive answer type		
	 Submitting assignments 		
	• Seminar Presentation – select a topic of choice in the concerned		
	area and present in the seminar		
	D. Semester End examination		

References

1. Photovoltaics: Designs, Systems and Applications, Michael Stock, Larsen and Keller Education

2. Photovoltaics: Engineering and Technology for Solar Power, Catherine Waltz, Syrawood Publishing House

3. Principles of Solar Engineering, D. Goswami, CRC Press

4. Solanki S. Chetan. Solar Photovoltaics: Fundamentals, Technologies and Applications, New Delhi, PHI, 2012.

CAN DHI CIT	MAHATMA GANDHI UNIVERSITY
विद्यपा अमृतमघन्त	EMM20E08– Semiconductor nanostructures for optoelectronics

School Name	School of Energy Materials (SEM)
Programme	M. Tech Energy Science and Technology
Course Name	Semiconductor nanostructures for optoelectronics
Course Credit	2
Type of Course	ELECTIVE
Course Code	EMM20E08

Course Summary & Justification	This course is design and the devices deve and device characterin Nanostructured semi focus on the optoeled Quantum dots are on such as LEDs, solar of aims to impart basic	eloped usin ization tech conductors ctronic prop e of the emi- cell, biosen	g the QD r niques etc. or quantun perties beca inent and in sors, imagir	naterials an n dots have use of their novative ma ng, cancer th	attained g excellent aterials fo nerapy, et	tion methods reat potential applications. r applications c. This course
Semester	2					
Total StudentLearningT ime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Others include: Research, Fieldworks, Independent Learning etc	35			60	95
Pre-requisite	Basics of nanostructu	ared materia	als, synthes	is, applicati	on etc.	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the concept of QD materials, optoelectronic devices	U,I	1,2
2	Understand the theory and & concept of QD lasers	R,U,I	1,2,3
3	To learn about various characteristics of QD Lasers	U, A,I	2,7
4	To impart knowledge on different optoelectronic devices based on fiber optic technology	R,U, An	2,3,7
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)		

COURSE CONTENT

Module No:	Module Content	Hrs	CO. No.
1	Quantum Dot Infrared Photodetectors: QD and QDIP Structure Growth and Characterization, GaAs Capped Large and Small InAs QDs, AlGaAs Capped Large InAs MQD QDIP Structures, QDIP Device Characteristics Device Structures Detectors	20	1
2	Quantum Dot Lasers: Theoretical Overview, Dimensionality and Laser Performance, Advantages of an Idealized QD Laser, Progress in fabricating QD Lasers, State-of the-Art Complications, High-Speed Quantum Dot Lasers, MBE Growth of Self-Organized QDs	25	2

3	Characteristics: Characteristics of High-Speed Tunneling-Injection QD Lasers, Room Temperature DC Characteristics, Temperature-Dependent DC Characteristics, High-Speed Modulation Characteristics	20	3
4	Fiber Optic Lighting: Zinc Oxide-Based Nanostructures, General Properties of ZnO, ZnO One-Dimensional Nanostructures, Growth Mechanisms, Growth Techniques, Structural Characterizations, Optical Characterizations, Optical Devices, Electronic Devices	25	4

Teaching	Classroom Procedure (Mode of transaction)
and	Direct Instruction: Lecture, Explicit Teaching, E-learning, Interactive
Learning	Instruction: Active co-operative learning, Seminar, Group Assignments
Approach	Authentic learning, Flip classroom
Assessment Types	Mode of Assessment C. Formative Assessment D. Summative assessment

REFERENCES

- 01. Semiconductor nanostructures for optoelectronic applications: Todd D.Steiner
- 02. Semiconductor nanostructures for fundamental physics & optoelectronic applications: J.P.Reithmaier
- 03. Recent advances in quantum dot optoelectronic devices & future trends: S.Kim&M.Razeghi
- 04. Quantum photovoltaic devices based on Antimony compound semiconductors : Y.Wei, A.Gin&M.Razeghi
- 05. Mid -infrared optoelectronics: A.Keir
- 06. Semiconductor Nanostructures for Optoelectronic Devices, Yi, Gyu-Chul Springer 2012.
- 07. Optoelectronics, Emmanuel Rosencher, Cambridge University Press 2010
- 08. Optoelectronics, an introduction, J. Wilson, 1983, Science.

A DATE OF	MAHATMA GANDHI UNIVERSITY
मिलवा अमृतमञ्चले	METALS, CERAMICS AND COMPOSITE MATERIALS FOR ENERGY APPLICATIONS
School Name	School of Energy Materials
Programme	M.Tech in Energy Science and Technology
Course Name	Metals, Ceramics and Composite Materials for Energy Applications
Type of Course	Core
Credit Value	4
Course Code	EMM20E09

	[
Course	This course is design	ied at provi	iding studen	ts with conc	epts of ato	omic defects,
Summary &	electrical properties.	In depth l	knowledge o	on dielectrics	s, magneti	c properties.
Justification	Concept on sintering,	densificatio	n, thermal an	d mechanica	l properties	s. Knowledge
	on composite interfac	e, metal, cer	ramic compo	sites.		C
	This course aims to impart basic knowledge on atomic structure, diffusion					
	mechanism, electrical	-		•		
	properties, dielectric				-	U
	coarsening processes.	•			•	
	To give the concep			·	.	
	Understanding the co	-	•	÷	· ·	rties and also
	metal matrix, ceramic	matrix con	posites for e	energy applic	ations.	
Semester	Ι					
Total Student						Total
Learning Time	Learning Approach	Lecture	Tutorial	Practical	Others	Learning
(SLT)						Hours
		40	40	0	40	120
Pre-requisite	Basic knowledge of Chemistry (1st year level). Any discipline of mechanical					
	engineering, production engineering, polymer technology, chemical engineering,					
	chemistry and physics can complete the course. Basics of different properties such					
	as electric, magnetic, thermal, and mechanical properties.					
	as electric, magniteic,	inermai, and	u mecnanica	i properties.		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the concept of electrical, magnetic, thermal, mechanical properties of metals, composites for energy applications	U	1
2	To learn about various properties for energy applications	U, A, R, An	1
3	To impart knowledge on analyzing the properties of materials used for energy applications.	U, R, A	3
4	To understand the fundamentals, basics and properties of materials	U, R, I	1,3,6
5	To study the basics of polymers and their application in energy systems and devices.	U, A, R, S, I, An C	4
6	Will understand Superconducting nano-materials & their properties and applications	U, R, S, I, An	2,4
7	Will understand in depth knowledge in mechanical and thermal properties	U, A, R, An	1,2,5
8	Upon completion of the course, the students will have the knowledge of composite materials, interfaces, reinforcements	U, R, S, I, An, A	2,3
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) est (I) and Appreciation (Ap)	, Create (C),	Skill (S),

COURSE CONTENT

Module No:	Module Content	Hrs	CO.
			No.
Module 1	Atomic structure: Atomic structure and bonding, Crystal	10	4
	structures lattices, indices etc with examples of atomic structures	Hrs.	
	and bonding types, Order and disorder, Diffusion mechanisms,		
	Deformation mechanisms, Classes of metals, Point defects, line		
	defects, surface and volume defects, Strengthening mechanisms,		
	Simple alloys and intermetallics		
Module 2	Ceramic crystal structures: Ceramic crystal structures, Atomic defects including intrinsic and extrinsic point defects, Electrical properties including ferroelectrics, thermistors, electrical conductors, dielectrics, Magnetic properties including ferromagnetic and ferromagnetic materials.	12 Hrs.	1,2,3,4
Module 3	Dielectrics: Dielectrics, ferroelectrics and magnetoceramics, Magnetism: Dia-, Para, Ferro-, Antiferro-, Ferri-magnetism, Magnetic properties: Gaint magnetoresistance, Tunneling magnetoresistance, Colossal magnetoresistance, Superparamagnetism, High Tc materials: YBCO and Bi-systems (Brief idea), Superconducting nano-materials & their properties and applications.	13 Hrs.	1,3,6
Module 4	Solid state sintering: Solid state sintering, Densification and coarsening processes, Grain boundary mobility, Porosity evolution (stability/entrapment), Thermal properties including thermal expansion, creep, and 44 thermal stress, Mechanical properties including strength, toughness, and microstructural design	12 Hrs.	1,7
Module 5	Composites: Composite Interfaces, Bonding Mechanisms, Other	13	1,5,7,8
	Interfacial properties, Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites,	Hrs.	

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Contact classes, Tutorials, Seminar, Assignments, Authentic learning, Library				
Approach	work, independent studies, Presentation by individual student				
Assessment	Mode of Assessment				
Types	O. Continuous Internal Assessment (CIA)				
	 Surprise test Internal Test – Objective and descriptive answer type Submitting assignments Seminar Presentation – select a topic of choice in the concerned area and present in the seminar P. Semester End examination				

REFERENCES

- 01. Introduction to Materials Science and Engineering, William J Callister, John Wiley & Sons, Inc.
- 02. K. Vijayamohanan Pillai and Meera Parthasarathi Functional Materials: A Chemist's Perspective by, Orient Blackswan (21 November 2013)
- 03. Physical Metallurgy Principles Reed-Hill R. E., and R. Abbaschian, 3rd ed. Boston: PWS-Kent, 1992.
- 04. Structure and Properties of Engineering Alloys Smith, W. F., McGrawHill, 1981.
- 05. Introduction to Ceramics W.D. Kingery, H.K. Bowen, D.R. Ulhmann.
- 06. Treatise on Inorganic Chemistry, Vol. II: Subgroups of the periodic table and general topics, Preparation of Metals H. Remy, Elsevier, 1956.
- 07. Synthesis of Advanced Ceramic Materials David Segal.
- Fundamentals of Polymer Science: An Introductory Text P. Painter and M. Coleman, Technomic, 1997
- 09. Composite Materials: Engineering and Science F. L. Matthews and R. D. Rawlings, Chapman & Hall 1994
- 10. Ceramic Processing and Sintering M.N. Rahman, Marcel Dekker, Inc.

MAHATMA GANDHI UNIVERSITY

EMM20E10– Statistical Mechanics

School Name	School of Energy Materials (SEM)				
Programme	M. Tech Energy Science and Technology				
Course Name	Statistical Mechanics				
Course Credit	2				
Type of Course	ELECTIVE				
Course Code	EMM20E10				
Course Summary	Statistical mechanics thus not only provides a foundation for thermodynamics				
& Justification	and the properties of gases, but generally for condensed matter in the form of				
	fluids, glasses, crystals, semiconductors, superconductors, polymers,				
	biomaterials, etc. Its concepts find broad applications in astrophysics,				
	geophysics, particle physics, chemistry, biology, and engineering science.				
	This course offers an introduction to probability, statistical mechanics, and				
	thermodynamics. Specific topics in probability include random variables, joint				
	and conditional probability densities, and functions of a random variable.				
	Concepts in statistical mechanics include macroscopic variables and				
	thermodynamic equilibrium, fundamental assumptions of statistical				
	mechanics, and microcanonical and canonical ensembles. Also covered are the				
	first, second, and third laws of thermodynamics. Numerous examples				
	illustrating a wide variety of physical phenomena such as magnetism,				
	polyatomic gases, thermal radiation, electrons in solids, and noise in electronic				
	devices are discussed.				
Semester	2				
Total	Total				
StudentLearningT	Learning Approach Lecture Tutorial Practical Others Learning				
ime (SLT)	Hours				
	Others include: 37 60 97				
	Research,				

	Fieldworks,					
	Independent					
	Learning etc					
Pre-requisite	Basics of thermodyna	amics and p	properties of	f different s	tates of m	aterials

CO	Expected Course Outcome	Learning	PSO No.		
No.		Domains			
1	Students will have achieved the ability to find the connection	U, R, I	1,3, 4		
	between statistics and thermodynamics				
2	To learn the differentiate between different ensemble theories	U, S, I,A	1, 5,7		
	used to explain the behavior of the systems				
3	Differentiate between classical statistics and quantum statistics.	U, R, S, A	2,7		
4	To explain the statistical behavior of ideal Bose and Fermi	U, R, An	3, 4		
	systems				
5	To understand physical significance of statistical quantities	U, R, A	2,4		
6	To understand behaviour of ideal gas in quantum mechanical	U, R, S, I	1, 2, 5		
	micro				
	canonical ensemble and other quantum mechanical ensemble				
*Reme	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S),				
Interes	Interest (I) and Appreciation (Ap)				

COURSE CONTENT

COURSE CONTENT

Module	Module Content	Hrs	CO.
No:			No.
1	Thermodynamics and Statistical theory	15	1,2
	Laws of thermodynamics and their consequences. Thermodynamic		
	potentials and Maxwell's relations. Chemical potential. Phase		
	equilibriam. The macroscopic and microscopic states -contact between		
	statistics and thermodynamics – the classical ideal gas – entropy of mixing		
	and the Gibb's paradox – Phase space of a classical system – Liouville's		
	theorem and it's consequences		
	– The micro canonical ensemble – quantum states and phase space – The		
	equi partition theoremThe Virial theorem		
2	The Canonical and grand canonical ensemble	15	3,4
	Equilibrium between a system and heat reservoir - a system in the		
	canonical ensemble – thermo dynamical relations in a canonical ensemble		
	- the classical systems – energy fluctuations in the canonical ensemble:		
	correspondence with micro canonical ensemble – equilibrium between a		
	system and a particle energy reservoir – a system in the grand canonical		
	ensemble – physical		
	significance of statistical quantities – density and energy fluctuations in		
	the grand canonical ensemble		
3	Quantum statistics	15	4
	Quantum mechanical basis - statistical distribution - an ideal gas in		
	quantum mechanical micro canonical ensemble and other quantum		
	mechanical ensemble - Partition functions and other thermodynamic		
	quantities of monatomic and diatomic molecules. Thermodynamic		
	behavior of a Bose gas – thermodynamics of Black body radiation – Bose		
	Einstein condensation		
4	Theory of Phase transition and fluctuations Problem of condensation -	10	5,6
	Ginzburg – Landau theory – Ising model and it's solution for a linear chain		
	- equivalence of Ising model to other models - Lattice gas and binary		
	alloy. Fluctuations – Brownian motion – Langevin equation		

Teaching	Classroom Procedure (Mode of transaction)						
and	4. Direct Instruction: Lecture, Explicit Teaching, E-learning						
Learning	5. Interactive Instruction: Active co-operative learning, Seminar, Group						
Approach	Assignments Authentic learning						
	6. Flip classroom						
Assessment	Mode of Assessment						
Types	E. Formative Assessment						
	F. Summative assessment						

REFERENCES

- 01. Introductory Statistical Mechanics, R. Bowley&M.Sanchez, 2nd Edn. 2007, Oxford University Press, Indian Edition, (Chaptr 11& 12)
- 02. Statistical Mechanics, R.K. Pathria, & P.D. Beale, 2nd Edn, B-H (Elsevier) (2004).
- 03. Statistical Mechanics, Kerson Huang, John Wiley and Sons (2003).
- 04. Statistical mechanics and properties of matter E S R Gopal
- 05. Statistical thermodynamics M C Gupta
- 06. An introduction to thermodynamics- Y V C Rao
- 07. Fundamentals of Statistical Mechanics, B. B. Laud, New Age International.
- 08. Statistical Mechanics, B.K. Agarwal and M. Eisner, Wiley Eastern
- 09. Elements of Statistical Mechanic, Kamal Singh, S P. Singh, S. Chand & Co

Viva Voce

	MAHATMA GANDHI UNIVERSITY
विद्यया अमृतमङन्ते	EMM20C11 Mini Project & Viva Voce

School Name	School of Energy Materials
Programme	M. Tech in Energy Science and Technology

Course Name	Mini Project & Viva Voce					
Type of Course	Core					
Course Code	EMM20C11					
Course Summary & Justification	Train the student to assimilate research problems and research attitude by acquiring hands-on experience in either experimental/computational polymer materials or both. Relevance of scientific literature in knowledge addition and problem identification would be emphasised. Encourage the student to initiate the process of literature review and use of online research repositories. Research literature documentation and rudimentary research writing is envisaged in this course.					
Semester	2		Credit		2	
TotalStudentLearningTime(SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Authentic learning Collaborative learning Case based learning			40	40	80
Pre-requisite	Fundamental understanding and knowledge of polymeric materials.					
Others- Library, sem	inar and assignment prep	parations,	test, jou	rnal, discu	ssion etc.	

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;		
1	Conceive a research problem in the area of polymer science by the application of scientific methodologies	U, C	1,2,3,4,5,7
2	Apply scientific methodologies to solve the problem either through experiments or simulation or applying both.	C, A	1,2,3,4, 7,8
3	Perform experiment or simulation or both to accomplish the outcome of the research.	An, E	4,7
4	Analyse results and arrive at inferences and conclusions drawn out of it. Also understand the documentation procedure for project report writing.	An, E	3, 7
5	Present the scientific insight and knowledge derived by performing research work before a board of experts in the field of polymer science.	S, An, Ap, I	3, 5,9
	ember (R), Understand (U), Apply (A), Analyse (An), Evaluate st (I) and Appreciation (Ap)	(E), Create (C), Skill (S),

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Authentic learning, case-based learning, collaborative learning, seminar, group
Approach	activities.
Assessment Types	 Mode of Assessment 1. Continuous Internal Assessment (CIA) 2. Seminar Presentation – prepare mini project/review report and present in the seminar

SEMSETER 3 and SEMSETER 4

The M. Tech students will undergo rigorous research project training in leading industries or research laboratories for one full year. The projects are intended to carry out in leading institutions preferably in abroad.

MAHATMA GANDHI UNIVERSITY

EMM20C12 Project Work – Phase I

School Name	School of Energy Materia	chool of Energy Materials				
Programme	MTech. Energy Science a	ATech. Energy Science and Technology				
Course Name	Project Work – Phase I					
Course Credit	16					
Type of Course	CORE					
Course Code	EMM20C12					
Course Summary &	The candidate shall do a 1	research p	roject in ar	y of the re	esearch i	nstitute. This
Justification	follows discussion with th	e Examina	ation Board	consisting	of the C	Chairman and
	the Internal Examiner.					
Semester	Ш					
Total						Total
StudentLearningTi	Learning Approach	lre	rial	ical	IS	Learning
me (SLT)	Learning Approach et arring Learning Approach I arrived to the sector of					
	Library work, lab work,	-	-	-	-	-
	Team work, independent	Team work, independent				
	learning					
Pre-requisite	Excellent Lab skills and k	nowledge	of different	characteriz	zation teo	chniques.

CO	Expected Course Outcome	Learning	PSO	
No.		Domains	No.	
	At the end of the course the students are expected to			
	To clearly present and discuss the research objectives,	А	2, 3, 4,	
	methodology, analysis, results and conclusions effectively.		5	
2	Acquire a comprehensive knowledge of the area subject of study	Ар	1, 7	
3	Gain deeper knowledge of methods in the topic of study.	А	6	
4	Able to contribute to research and development work.	U	3	
5	Undertake independent, original and critical research on a relevant topic.	U	5	
6	Able to plan and use adequate methods to conduct specific tasks in given frameworks and to evaluate this work.	U	6,9	
7	Create, analyse and critically evaluate different problems and their solutions.	С	7,8	
8	Gain a consciousness of the ethical aspects of research.	Е	6,9	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching and	Classroom Procedure (Mode of transaction)					
Learning Approach E-learning, interactive Instruction:, Seminar, Authentic learning, , Library work						
	laboratory work, Team work, independent learning and Group discussio					
	Presentation of research work.					
Assessment Types	Mode of Assessment					
	Evaluation of the presentation by both internal and internal examiners.					

SEMESTER IV

	MAHATMA GANDHI UNIVERSITY
विद्यया अमृतमञ्जू	EMM20C13 Comprehensive Viva Voce

School Name	School of Energy Ma	terials				
Programme	M.Tech. in Energy S	cience and	Technolog	<u>sy</u>		
Course Name	Comprehensive Viva	Comprehensive Viva Voce				
Course Credit	4					
Type of Course	CORE					
Course Code	EMM20C13					
-	The comprehensive v			•		
Justification	consisting of the Cha significant features wi			nai Examir	ier . The	e relevance and
Semester	IV					
Total						Total
StudentLearningTi	Learning Approach	ure	rial	ical	SI	Learning
me (SLT)		Lecture	Futorial	Practical	Others	Hours
	Classroom studies,	-	-	-	-	-
	lab work, library					
	Library work,					
	independent					
	learning etc.					
Pre-requisite	Basic as well as in-dep	oth knowled	lge in the c	oureses he/	she studi	ied

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
	At the end of the course the students are expected to		
1	Achieve fundamental and in-depth knowledge	A,C	3,4
2	Acquire more in-depth knowledge of the major subject of study	Ар	1,2,3,4,5,6,7
3	Deeper knowledge of methods in the major subject of study.	A	1, 4,8
4	Able to contribute to research and development work.	U	3,8,9
	ember (R), Understand (U), Apply (A), Analyse (An), Evalua d Appreciation (Ap)	te (E), Create	(C), Skill (S), Interest

Teaching and	Classroom Procedure (Mode of transaction)
Learning Approach	E-learning, interactive Instruction:, Seminar, Authentic learning, , Library work
	, laboratory work, Team work, independent learning and Group discussion,
	Presentation of research work
Assessment Types	Mode of Assessment
	Thorough understanding of all the M.Tech. level course contents and recent trends
	in the broad area of chemical sciences are evaluated. The candidate will be asked
	questions based on the whole syllabus he/she studied in the entire programme.
	How he/she answered or responded the questions asked will be
	considered for evaluation.

MAHATMA GANDHI UNIVERSITY

EMM20C14 Project Work – Phase II

School Name	School of Energy Materia	als				
Programme	MTech. Energy Science a	ITech. Energy Science and Technology				
Course Name	Project Work – Phase II					
Course Credit	12					
Type of Course	CORE					
Course Code	EMM20C14					
Course Summary &	The candidate shall do a 1	research p	roject in ar	ny of the re	esearch i	nstitute. This
Justification	follows discussion with th	e Examina	ation Board	consisting	of the C	Chairman and
	the Internal Examiner.					
Semester	IV					
Total						Total
StudentLearningTi	Learning Approach	ure	rial	tical	rs	Learning
me (SLT)		Lecture	Futorial	Practical	Others	Hours
	Library work, lab work,	-	-	-	-	-
	Feam work, independent					
	learning					
Pre-requisite	Excellent Lab skills and k	nowledge	of different	characteriz	zation te	chniques.

CO	Expected Course Outcome	Learning	PSO	
No.		Domains	No.	
	At the end of the course the students are expected to			
	To clearly present and discuss the research objectives,	A	2, 3, 4,	
	methodology, analysis, results and conclusions effectively.		5	
2	Acquire a comprehensive knowledge of the area subject of study	Ар	1, 7	
3	Gain deeper knowledge of methods in the topic of study.	А	6	
4	Able to contribute to research and development work.	U	3	
5	Undertake independent, original and critical research on a relevant topic.	U	5	
6	Able to plan and use adequate methods to conduct specific tasks in given frameworks and to evaluate this work.	U	6,9	
7	Create, analyse and critically evaluate different problems and their solutions.	С	7,8	
8	Gain a consciousness of the ethical aspects of research.	Е	6,9	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Teaching and	Classroom Procedure (Mode of transaction)
Learning Approach	E-learning, interactive Instruction:, Seminar, Authentic learning, , Library work,
	laboratory work, Team work, independent learning and Group discussion,
	Presentation of research work.
Assessment Types	Mode of Assessment
	Evaluation of the presentation by both internal and internal examiners.